Skip to main content
Log in

Calculus for parabolic second-order derivatives

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

In this paper, a calculus for two second-order directional derivatives is presented and then applied in the development of second-order necessary optimality conditions for a nonsmooth mathematical program. The formulae of this calculus, which include rules for sums, pointwise maxima, and certain compositions of functions, are valid for a large class of non-Lipschitzian functions and in fact subsume the sharpest results of the calculus of first-order upper and lower epiderivatives. Two methods are utilized in the derivation of these formulae. One centers around the concept of metric regularity, while the other relies upon the use of recession cones and ‘interior tangent sets’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.-P. and Frankowska, I. H.:Set-Valued Analysis, Birkhäuser, Boston, 1990.

    Google Scholar 

  2. Ben-Israel, A. Ben-Tal, A., and Zlobec, S.:Optimality in Nonlinear Programming: A Feasible Directions Approach, Wiley, New, 1981.

    Google Scholar 

  3. Ben-Tal, A.: Second-order and related extremality conditions in nonlinear programming,J. Optim. Theory Appl. 31 (1980), 143–165.

    Google Scholar 

  4. Ben-Tal, A. and Zowe, J.: A unified theory of first and second order conditions for extremum problems in topological vector spaces,Math. Programming Study 19 (1982), 39–77.

    Google Scholar 

  5. Ben-Tal, A. and Zowe, J.: Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems,Math. Programming 24 (1982), 70–92.

    Google Scholar 

  6. Ben-Tal, A. and Zowe, J.: Directional derivatives in nonsmooth optimization,J. Optim. Theory Appl. 47 (1985), 483–490.

    Google Scholar 

  7. Borwein, J. M.: Necessary and sufficient conditions for quadratic minimality,Numer. Funct. Anal. Optim. 5 (1982), 127–140.

    Google Scholar 

  8. Borwein, J. M.: Stability and regular points of inequality systems,J. Optim. Theory Appl. 48 (1986), 9–52.

    Google Scholar 

  9. Borwein, J. M.: Epi-Lipschitz-like sets in Banach spaces: theorems and examples,Nonlinear Anal. 11 (1987), 1207–1217.

    Google Scholar 

  10. Borwein, J. M. and Strojwas, H. M.: Directionally Lipschitzian mappings on Baire spaces,Canad. J. Math. 36 (1984), 95–130.

    Google Scholar 

  11. Borwein, J. M. and Strojwas, H. M.: The hypertangent cone,Nonlinear Anal. 13 (1989), 125–144.

    Google Scholar 

  12. Chaney, R. W.: On second derivatives for nonsmooth functions,Nonlinear Anal. 9 (1985), 1189–1209.

    Google Scholar 

  13. Clarke, F. H.:Optimization and Nonsmooth Analysis, Wiley, New York, 1983.

    Google Scholar 

  14. Cominetti, R.: Metric regularity, tangent sets, and second-order optimality conditions,Appl. Math. Optim. 21 (1990), 265–287.

    Google Scholar 

  15. Cominetti, R.: On Pseudo-Differentiability,Trans. Amer. Math. Soc. 324 (1991), 843–865.

    Google Scholar 

  16. Dolecki, S.: Tangency and differentiation: some applications of convergence theory,Ann. Mat. Pura Appl. 130 (1982), 223–255.

    Google Scholar 

  17. El Abdouni, B. and Thibault, L.: Quasi-interiorlye-tangent cones to multifunctions,Numer. Funct. Anal. Optim. 10 (1989), 619–641.

    Google Scholar 

  18. Fan, K.: Minimax theorems,Proc. Nat. Acad. Sci. 39 (1953), 42–47.

    Google Scholar 

  19. Furukawa, N. and Yoshinaga, Y.: Higher-order variational sets, variational derivatives and higher-order necessary conditions in abstract mathematical programming,Bull. Inform. Cybern. 23 (1988), 9–40.

    Google Scholar 

  20. Hiriart-Urruty, J.-B.: New concepts in nondifferentiable programming,Bull. Soc. Math. France Mémoire 60 (1979), 57–85.

    Google Scholar 

  21. Hoffmann, K. H. and Kornsteadt, H. J.: Higher-order necessary conditions in abstract mathematical programming,J. Optim. Theory Appl. 26 (1978), 533–568.

    Google Scholar 

  22. Ioffe, A. D.: Approximate subdifferentials and applications I: the finite-dimensional theory,Trans. Amer. Math. Soc. 281 (1984), 389–416.

    Google Scholar 

  23. Ioffe, A. D.: Variational analysis of a composite function: a formula for the lower second order epi-derivative,J. Math. Anal. Appl. 160 (1991), 379–405.

    Google Scholar 

  24. Kawasaki, H.: Second-order necessary conditions of the Kuhn-Tucker type under new constraint qualifications,J. Optim. Theory Appl. 57 (1988), 253–264.

    Google Scholar 

  25. Kawasaki, H.: An envelope-like effect of infinitely many inequality constraints on second-order necessary conditions for minimization problems,Math. Programming 41 (1988), 73–96.

    Google Scholar 

  26. Kawasaki, H.: The upper and lower second order directional derivatives for a sup-type function,Math. Programming 41 (1988), 327–339.

    Google Scholar 

  27. Linnemann, A.: Higher-order necessary conditions for infinite optimization,J. Optim. Theory Appl. 38 (1982), 483–512.

    Google Scholar 

  28. Penot, J.-P.: Generalized higher-order derivatives and higher order optimality conditions, Preprint, University of Santiago, 1984.

  29. Penot, J.-P.: Variations on the theme of nonsmooth analysis: another subdifferential, inNondifferentiable Optimization: Motivations and Applications, Lecture Notes in Econom. and Math. Systems 255, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  30. Penot, J.-P.: Optimality conditions in mathematical programming, Preprint, 1990.

  31. Penot, J.-P.: Second-order generalized derivatives: Comparison of two types of epi-derivatives, inAdvances in Optimization, Lecture Notes in Econom. and Math. Systems 382, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  32. Poliquin, R. and Rockafellar, R. T.: A calculus of epi-derivatives applicable to optimization,Canad. J. Math. 45 (1993), 879–896.

    Google Scholar 

  33. Rockafellar, R. T.:Convex Analysis, Princeton University Press, Princeton, NJ, 1970.

    Google Scholar 

  34. Rockafellar, R. T.: Directionally Lipschitzian functions and subdifferential calculus,Proc. London Math. Soc. 39 (1979), 331–355.

    Google Scholar 

  35. Rockafellar, R. T.: Generalized directional derivatives and subgradients of nonconvex functions,Canad. J. Math. 32 (1980), 157–180.

    Google Scholar 

  36. Rockafellar, R. T.:The Theory of Subgradients and its Applications to Problems of Optimization: Convex and Nonconvex Functions, Heldermann Verlag, Berlin, 1981.

    Google Scholar 

  37. Rockafellar, R. T.: Extensions of subgradient calculus with applications to optimization,Nonlinear Anal. 9 (1985), 665–698.

    Google Scholar 

  38. Rockafellar, R. T.: First- and second-order epi-differentiability in nonlinear programming,Trans. Amer. Math. Soc. 307 (1988), 75–108.

    Google Scholar 

  39. Seeger, A.: Second order directional derivatives in parametric optimization problems,Math. Oper. Res. 13 (1988), 124–139.

    Google Scholar 

  40. Thibault, L.: Tangent cones and quasi-interiorly tangent cones to multifunctions,Trans. Amer. Math. Soc. 277 (1983), 601–621.

    Google Scholar 

  41. Ward, D. E.: Convex subcones of the contingent cone in nonsmooth calculus and optimization,Trans. Amer. Math. Soc. 302 (1987) 661–682.

    Google Scholar 

  42. Ward, D. E.: Which subgradients have sum formulas?Nonlinear Anal. 12 (1988), 1231–1243.

    Google Scholar 

  43. Ward, D. E.: Directional derivative calculus and optimality conditions in nonsmooth mathematical programming,J. Inform. Optim. Sci. 10 (1989), 81–96.

    Google Scholar 

  44. Ward. D. E.: Chain rules for nonsmooth functions,J. Math. Anal. Appl. 158 (1991), 519–538.

    Google Scholar 

  45. Ward, D. E. and Borwein, J. M.: Nonsmooth calculus in finite dimensions,SIAM J. Control Optim. 25 (1987), 1312–1340.

    Google Scholar 

  46. Zalinescu, C.: On convex sets in general position,Linear Algebra Appl. 64 (1985), 191–198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, D. Calculus for parabolic second-order derivatives. Set-Valued Anal 1, 213–246 (1993). https://doi.org/10.1007/BF01027635

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01027635

Mathematics Subject Classifications (1991)

Key words

Navigation