Skip to main content
Log in

Random sequential addition: A distribution function approach

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Random sequential addition (RSA) of hard objects is an irreversible process defined by three rules: objects are introduced on a surface (or ad-dimensional volume) randomly and sequentially, two objects cannot overlap, and, once inserted, an object is clamped in its position. The configurations generated by an RSA can be characterized, in the macroscopic limit, by a unique set of distribution functions and a density. We show that these “nonequilibrium” RSA configurations can be described in a manner which, in many respects, parallels the usual statistical mechanical treatment of equilibrium configurations: Kirkwood-Salsburg-like hierarchies for the distribution functions, zero-separation theorems, diagrammatic expansions, and approximate equations for the pair distribution function. Approximate descriptions valid for low to intermediate densities can be combined with exact results already derived for higher densities close to the jamming limit of the process. Similarities and differences between the equilibrium and the RSAconfigurations are emphasized. Finally, the potential application of RSA processes to the study of glassy phases is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Flory,J. Am. Chem. Soc. 61:1518 (1939).

    Google Scholar 

  2. J. K. Mackenzie,J. Chem. Phys. 37:723 (1962).

    Google Scholar 

  3. J. J. Gonzalez, P. C. Hemmer, and J. C. Høye,Chem. Phys. 3:228 (1974).

    Google Scholar 

  4. L. Finegold and J. T. Donnell,Nature 278:443 (1979).

    Google Scholar 

  5. M. Hasegawa and M. Tanemura, inRecent Developments in Statistical Interference and Data Analysis, K. Matusita, ed. (North-Holland, Amsterdam, 1980).

    Google Scholar 

  6. J. Feder and I. Giaver,J. Colloid Interface Sci. 78:144 (1980).

    Google Scholar 

  7. J. Feder,J. Theor. Biol. 87:237 (1980).

    Google Scholar 

  8. E. M. Tory and W. S. Jodrey, inAdvances in the Mechanics and the Flow of Granular Materials, M. Shahinpoor, ed. (Trans. Tech., Clausthat-Zellerfeld, 1983), Vol.I, and references therein.

    Google Scholar 

  9. E. Roman and N. Majlis,Solid State Commun. 47:259 (1983).

    Google Scholar 

  10. K. Gotoh, M. Nakagawa, and M. Matsuoka,Paniculate Sci. Technol. 3:27 (1985).

    Google Scholar 

  11. R. S. Nord and J. W. Evans,J. Chem. Phys. 82:2785 (1985), and references therein.

    Google Scholar 

  12. G. Y. Onoda and E. G. Liniger,Phys. Rev. A 33:715 (1986).

    Google Scholar 

  13. B. Widom,J. Chem. Phys. 44:3888 (1966).

    Google Scholar 

  14. P. Schaaf and J. Talbot,J. Chem. Phys. 91:4401 (1989).

    Google Scholar 

  15. D. K. Hoffman,J. Chem. Phys. 65:95 (1976).

    Google Scholar 

  16. J. W. Evans,Physica 123A:297 (1984).

    Google Scholar 

  17. J. W. Evans,J. Chem. Phys. 87:3038 (1987).

    Google Scholar 

  18. G. C. Barker and M. J. Grimson,Mol. Phys. 63:145 (1988).

    Google Scholar 

  19. P. Schaaf, J. Talbot, H. M. Rabeony, and H. Reiss,J. Phys. Chem. 92:4826 (1988).

    Google Scholar 

  20. A. Baram and D. Kutasov,J. Phys. A: Math. Gen. 22:L251 (1989).

    Google Scholar 

  21. A. Rényi,Publ. Math. Inst. Hung. Acad. Sci. 3:109 (1958) [Translated inSelected Transl. Math. Stat. Prob. 4:203 (1963)].

    Google Scholar 

  22. E. L. Hinrichsen, J. Feder, and T. Jøssang,J. Stat. Phys. 44:793 (1986).

    Google Scholar 

  23. D. W. Cooper,J. Colloid Interface Sci. 119:442 (1986).

    Google Scholar 

  24. D. W. Cooper,Phys. Rev. A 38:522 (1988).

    Google Scholar 

  25. R. D. Vigil and R. M. Ziff,J. Chem. Phys. 91:2599 (1989).

    Google Scholar 

  26. J. Talbot, G. Tarjus, and P. Schaaf,Phys. Rev. A 40:4808 (1989).

    Google Scholar 

  27. Y. Pomeau,J. Phys. A: Math. Gen. 13:L193 (1980).

    Google Scholar 

  28. R. H. Swendsen,Phys. Rev. A 24:504 (1981).

    Google Scholar 

  29. P. Schaaf and J. Talbot,Phys. Rev. Lett. 62:175 (1989).

    Google Scholar 

  30. G. Stell, inThe Wonderful World of Stochastics, M. F. Schlesinger and G. H. Weiss, eds. (Elsevier, Amsterdam, 1985).

    Google Scholar 

  31. H. Reiss and P. Schaaf,J. Chem. Phys. 91:2514 (1989).

    Google Scholar 

  32. J. Kirkwood and Z. Salsburg,Disc. Faraday Soc. 15:28 (1953).

    Google Scholar 

  33. L. D. Landau and E. M. Lifshitz,Statistical Physics, 2nd ed. (Addison-Wesley, Reading, Massachusetts, 1969).

    Google Scholar 

  34. R. Brout,Phys. Rev. 115:824 (1959).

    Google Scholar 

  35. H. Reiss, H. L. Frisch, and J. L. Lebowitz,J. Chem. Phys. 31:369 (1959).

    Google Scholar 

  36. S. Torquato and G. Stell,J. Chem. Phys. 78:3262 (1983).

    Google Scholar 

  37. J. W. Evans,Phys. Rev. Lett. 62:2642 (1989).

    Google Scholar 

  38. B. Barboy and W. M. Gelbart,J. Stat. Phys. 22:685 (1980).

    Google Scholar 

  39. G. Stell, inThe Equilibrium Theory of Classical Fluids, H. L. Frisch and J. L. Lebowitz, eds. (Benjamin, New York, 1964).

    Google Scholar 

  40. E. Meeron and A. J. F. Siegert,J. Chem. Phys. 48:3139 (1968).

    Google Scholar 

  41. E. W. Grundke and D. Henderson,Mol. Phys. 24:269 (1972).

    Google Scholar 

  42. J. P. Hansen and I. R. McDonald,Theory of Simple Liquids, 2nd ed. (Academic Press, London, 1986).

    Google Scholar 

  43. J. E. Mayer and E. Montroll,J. Chem. Phys. 9:2 (1941).

    Google Scholar 

  44. E. E. Salpeter,Ann. Phys. 5:183 (1958).

    Google Scholar 

  45. S. A. Rice and P. Gray, Supplement to I. Z. Fisher,Statistical Theory of Liquids (University of Chicago Press, Chicago, Illinois, 1964).

    Google Scholar 

  46. A. Baram and D. Kutasov,J. Phys. A: Math. Gen. 22:L855 (1989).

    Google Scholar 

  47. G. Tarjus, J. Talbot, and P. Schaaf,J. Phys. A: Math. Gen. 23:837 (1990).

    Google Scholar 

  48. G. S. Cargill,J. Appl. Phys. 41:2248 (1970); J. L. Finney,Nature 266:309 (1977); P. H. Gaskell, inGlassy Metals, H. Beck and H.-J. Giintherodt, eds. (Springer, Berlin, 1983), Vol. II.

    Google Scholar 

  49. L. V. Woodcock,J. Chem. Soc. Faraday II 72:1667 (1976);74:11 (1978); L. V. Woodcock and C. A. Angell,Phys. Rev. Lett. 47:1129 (1981).

    Google Scholar 

  50. E. L. Hinrichsen, J. Feder, and T. Jøssang,Phys. Rev. A 41:4199 (1990); B. D. Lubachevsky and F. H. Stillinger,J. Stat. Phys. 60:561 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarjus, G., Schaaf, P. & Talbot, J. Random sequential addition: A distribution function approach. J Stat Phys 63, 167–202 (1991). https://doi.org/10.1007/BF01026598

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01026598

Key words

Navigation