Skip to main content
Log in

Monte Carlo study of the ising model phase transition in terms of the percolation transition of “physical clusters”

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Finite squareL×L Ising lattices with ferromagnetic nearest neighbor interaction are simulated using the Swendsen-Wang cluster algorithm. Both thermal properties (internal energyU, specific heatC, magnetization 〈|M|〉, susceptibilityχ) and percolation cluster properties relating to the “physical clusters,” namely the Fortuin-Kasteleyn clusters (percolation probability 〈P 〉, percolation susceptibilityχ p, cluster size distributionn l) are evaluated, paying particular attention to finite-size effects. It is shown that thermal properties can be expressed entirely in terms of cluster properties, 〈P 〉 being identical to 〈|M|〉 in the thermodynamic limit, while finite-size corrections differ. In contrast,χ p differs fromχ even in the thermodynamic limit, since a fluctuation in the size of the percolating net contributes toχ, but not toχ p. NearT c the cluster size distribution has the scaling properties as hypothesized by earlier phenomenological theories. We also present a generalization of the Swendsen-Wang algorithm allowing one to cross over continuously to the Glauber dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Fisher,Physics 3:267 (1967).

    Google Scholar 

  2. C. S. Kiang and D. Stauffer,Z. Phys. 235:130 (1970); A. Eggington, C. S. Kiang, D. Stauffer, and G. H. Walker,Phys. Rev. Lett. 26:820 (1971); D. Stauffer, C. S. Kiang, and G. H. Walker,J. Stat. Phys. 3:323 (1971).

    Google Scholar 

  3. K. Binder,Ann. Phys. 98:390 (1976).

    Google Scholar 

  4. A. Coniglio and W. Klein,J. Phys. A 13:2775 (1980).

    Google Scholar 

  5. A. Coniglio, C. R. Nappi, F. Peruggi, and L. Russo,Commun. Math. Phys. 51:315 (1976).

    Google Scholar 

  6. C.-K. Hu,Phys. Rev. B 29:5103 (1984).

    Google Scholar 

  7. D. Stauffer,Introduction to Percolation Theory (Taylor and Francis, London, 1985).

    Google Scholar 

  8. B. M. McCoy and T. T. Wu,The Two-Dimensional Ising Model (Harvard University Press, Cambridge, Massachusetts, 1968).

    Google Scholar 

  9. E. Stoll, K. Binder, and T. Schneider,Phys. Rev. B 6:2777 (1972).

    Google Scholar 

  10. K. Binder and D. Stauffer,J. Stat. Phys. 6:49 (1972).

    Google Scholar 

  11. H. Müller-Krumbhaar,Phys. Lett. 48A:459 (1974).

    Google Scholar 

  12. D. W. Heermann and D. Stauffer,Z. Physik B 44:339 (1981).

    Google Scholar 

  13. H. Müller-Krumbhaar and E. P. Stoll,J. Chem. Phys. 65:4294 (1974).

    Google Scholar 

  14. A. Marro and J. Toral,Physica 122A:563 (1983).

    Google Scholar 

  15. M. Nauenberg and J. Cambier, inFractals in Physics, L. Pietronero and E. Tosatti, eds. (North-Holland, Amsterdam, 1986), p. 421.

    Google Scholar 

  16. M. F. Sykes and D. S. Gaunt,J. Phys. A 9:2131 (1976).

    Google Scholar 

  17. K. Binder, D. Stauffer, and H. Müller-Krumbhaar,Phys. Rev. B 12:5261 (1975); R. Kretschmer, K. Binder, and D. Stauffer,J. Stat. Phys. 15:267 (1976).

    Google Scholar 

  18. K. Binder and D. W. Heermann, inScaling Phenomena in Disordered Systems, R. Pynn and A. Skjeltorp, eds. (Plenum Press, New York, 1985), p. 227.

    Google Scholar 

  19. K. Binder (ed.),Monte Carlo Methods in Statistical Physics, 2nd ed. (Springer, Berlin, 1986).

    Google Scholar 

  20. D. W. Heermann,Computer Simulation Methods in Theoretical Physics (Springer, Berlin, 1976).

    Google Scholar 

  21. K. Binder (ed.),Applications of the Monte Carlo Method in Statistical Physics, 2nd ed. (Springer, Berlin, 1987).

    Google Scholar 

  22. K. Binder and D. W. Heermann,Monte Carlo Simulation in Statistical Physics: An Introduction (Springer, Berlin, 1988).

    Google Scholar 

  23. R. H. Swendsen and J. S. Wang,Phys. Rev. Lett. 58:86 (1987).

    Google Scholar 

  24. P. W. Kasteleyn and C. M. Fortuin,J. Phys. Soc. Japan 26(Suppl.):11 (1969); C. M. Fortuin and P. W. Kasteleyn,Physica 57:536 (1972); C. M. Fortuin,Physica 58:393,59:545 (1972).

    Google Scholar 

  25. M. D'Onorio de Meo, Diplomarbeit, Universität Mainz (1988), unpublished.

  26. J. Hoshen and R. Kopelman,Phys. Rev. B 27:3438 (1976).

    Google Scholar 

  27. S. Wansleben,Comput. Phys. Commun. 43:9 (1987).

    Google Scholar 

  28. N. Ito and Y. Kanada,Supercomputer 25:31 (1988).

    Google Scholar 

  29. A. H. Burkitt and D. W. Heermann,Comput. Phys. Commun. 54:201 (1989).

    Google Scholar 

  30. K. Binder,Z. Physik B 43:119 (1981).

    Google Scholar 

  31. A. Margolina and H. J. Herrmann,Phys. Lett. 104A:295 (1984).

    Google Scholar 

  32. M. E. Fisher, inCritical Phenomena, M. S. Green, ed. (Academic Press, New York, 1971), p. 1.

    Google Scholar 

  33. M. E. Fisher and M. N. Barber,Phys. Rev. Lett. 28:1518 (1972).

    Google Scholar 

  34. M. N. Barber, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1983), p. 145.

    Google Scholar 

  35. K. Binder,Ferroelectrics 43:73 (1987).

    Google Scholar 

  36. A. Milchev, K. Binder, and D. W. Heermann,Z. Physik B 63:527 (1986).

    Google Scholar 

  37. R. Gissler, D. W. Heermann, and A. H. Burkitt, work in progress.

  38. R. G. Edwards and A. D. Sokal,Phys. Rev. D 38:2009 (1988).

    Google Scholar 

  39. N. Ito, M. Taiji, and M. Suzuki,J. Phys. (Paris) C8(Suppl. 12):1397 (1988).

    Google Scholar 

  40. D. W. Heermann and A. H. Burkitt,Physica A 162:210 (1990).

    Google Scholar 

  41. D. W. Heermann, A. H. Burkitt, and J. Kertesz, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Meo, M.D., Heermann, D.W. & Binder, K. Monte Carlo study of the ising model phase transition in terms of the percolation transition of “physical clusters”. J Stat Phys 60, 585–618 (1990). https://doi.org/10.1007/BF01025984

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025984

Key words

Navigation