Skip to main content
Log in

Microinjected ribonuclease A as a probe for lysosomal pathways of intracellular protein degradation

  • Review
  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

There are multiple pathways of intracellular protein degradation, and molecular determinants within proteins appear to target them for particular pathways of breakdown. We use red cell-mediated microinjection to introduce radiolabeled proteins into cultured human fibroblasts in order to follow their catabolism. A well-characterized protein, bovine pancreatic ribonuclease A (RNase A), is localized initially in the cytosol of cells after microinjection, but it is subsequently taken up and degraded by lysosomes. This lysosomal pathway of proteolysis is subject to regulation in that RNase A is taken up and degraded by lysosomes at twice the rate when serum is omitted from the culture medium. Subtilisin cleaves RNase A between residues 20 and 21, and the separated fragments are termed RNase S-peptide (residues 1–20) and RNase S-protein (residues 21–124). Microinjected RNase S-protein is degraded in a serum-independent manner, while RNase S-peptide microinjected alone shows a twofold increase in degradation in response to serum withdrawal. Furthermore, covalent linkage of S-peptide to other proteins prior to microinjection causes degradation of the conjugate to become serum responsive. These results show that recognition of RNase A and certain other proteins for enhanced lysosomal degradation during serum withdrawal is based on some feature of the amino-terminal 20 amino acids. The entire S-peptide is not required for enhanced lysosomal degradation during serum withdrawal because degradation of certain fragments is also responsive to serum. We have identified the essential region to be within residues 7–11 of RNase S-peptide (Lys-Phe-Glu-Arg-Gln; KFERQ). To determine whether related peptides exist in cellular proteins, we raised antibodies to the pentapeptide. Affinity-purified antibodies to KFERQ specifically precipitate 25–35% of cellular proteins, and these proteins are preferentially degraded in response to serum withdrawal. Computer analyses of known protein sequences indicate that proteins degraded by lysosomes at an enhanced rate in response to serum withdrawal contain peptide regions related, but not identical, to KFERQ. We suggest two possible peptide motifs related to KFERQ and speculate about possible mechanisms of selective delivery of proteins to lysosomes based on such peptide regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dice, J.F. Microinjected ribonuclease A as a probe for lysosomal pathways of intracellular protein degradation. J Protein Chem 7, 115–127 (1988). https://doi.org/10.1007/BF01025241

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025241

Key words

Navigation