Skip to main content
Log in

Superintegrable chiral Potts model: Thermodynamic properties, an “inverse” model, and a simple associated Hamiltonian

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The partition function of theN-state Superintegrable chiral Potts model is obtained exactly and explicitly (if not completely rigorously) for a finite lattice with particular boundary conditions. This yields the bulk and surface free energies, and horizontal and vertical correlation lengths and interfacial tensions. The critical exponents are α=1−2/N,μ horhor=2/N, and μvertvert=1, and the finite-size corrections are obtained at criticality. The eigenvalue spectrum of the column-to-column transfer matrix is that of a direct product ofN byN matrices. Inverting this matrix gives a related solvable model which is a generalization of the free-fermion model. The associated Hamiltobian has a very simple form, suggesting there may be a more direct algebraic method (perhaps a generalized Clifford algebra) for obtaining its eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Baxter, J. H. H. Perk, and H. Au-Yang,Phys. Lett. A 128:138 (1988).

    Google Scholar 

  2. R. J. Baxter,J. Stat. Phys. 52:639 (1988).

    Google Scholar 

  3. G. Albertini, B. M. McCoy, J. H. H. Perk, and S. Tang,Nucl. Phys. B 314:741 (1989).

    Google Scholar 

  4. R. J. Baxter,Phys. Lett. A 133:185 (1988).

    Google Scholar 

  5. G. Albertini, B. M. McCoy, and J. H. H. Perk,Phys. Lett. A 135:159 (1989); preprint ITP-SB-89-24, Institute for Theoretical Physics, State University of New York, Stony Brook, to appear inPhys. Lett. A.

    Google Scholar 

  6. R. J. Baxter, inAdvanced Studies in Pure Mathematics, Vol. 19 (Kirokuniya-Academic, 1989).

  7. K. Binder, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic, London, 1983).

    Google Scholar 

  8. R. M. Hornreich, M. Luban, and S. Shtrikman,Phys. Rev. Lett. 35:1678 (1975).

    Google Scholar 

  9. H. W. J. Blöte, J. L. Cardy, and M. P. Nightingale,Phys. Rev. Lett. 56:742 (1986).

    Google Scholar 

  10. I. Affleck,Phys. Rev. Lett. 56:746 (1986).

    Google Scholar 

  11. M. E. Fisher,J. Stat. Phys. 34:667 (1984).

    Google Scholar 

  12. R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic, London, 1982).

    Google Scholar 

  13. B. M. McCoy and T. T. Wu,The Two-Dimensional Ising Model (Harvard University Press, 1973).

  14. E. W. Montroll, R. B. Potts, and J. C. Ward,J. Math. Phys. 4:308 (1963).

    Google Scholar 

  15. P. J. Davis,Circulant Matrices (Wiley, New York, 1979).

    Google Scholar 

  16. F. Y. Wu,Rev. Mod. Phys. 54:235 (1982).

    Google Scholar 

  17. L. Onsager,Phys. Rev. 65:117 (1944).

    Google Scholar 

  18. B. Kaufman,Phys. Rev. 76:1232 (1949).

    Google Scholar 

  19. R. J. Baxter,Phil. Trans. Soc. Lond. 289:315 (1978).

    Google Scholar 

  20. T. D. Schultz, D. C. Mattis, and E. H. Lieb,Rev. Mod. Phys. 36:856 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxter, R.J. Superintegrable chiral Potts model: Thermodynamic properties, an “inverse” model, and a simple associated Hamiltonian. J Stat Phys 57, 1–39 (1989). https://doi.org/10.1007/BF01023632

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01023632

Key words

Navigation