Skip to main content
Log in

Effects of certain impurities on zinc electrowinning in high-purity synthetic solutions

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The individual effects of lead, copper, nickel, cobalt and antimony on zinc electrowinning were evaluated by measurements in high-purity synthetic solutions, free from additives. The coulombic efficiency (QE) of zinc electrodeposition was determined over 2h under mass transfer-controlled conditions at a temperature of 35°C and a current density of 400 A m−2 in a solution of 0.8 M ZnSO4+1.07 M H2SO4. Antimony had a very detrimental effect on QE causing decrease of ∼ 5 and 50% at 4 and 14 μg l−1, respectively. Antimony also exerted a strong grain-refining effect and changed the deposit orientation from random to (112) to (004) with increasing concentration. Lead had a small beneficial effect on QE at the electrode rotation rate employed (20 s−1). It also exerted a grain-refining effect and changed the deposit orientation from random to (102), (103), (104), to strong basal (004), (002) with increasing concentration. Copper, nickel and cobalt had minor effects on QE, with reductions at 5 mg l−1 of 0.8, 0.3 and 0.3%, respectively. The effects of copper on morphology and orientation were very concentration dependent, but with a general trend towards grain-refining and random orientation. Nickel promoted coarse-grained deposits and changed the orientation from random to (114), (102) to (204), (102) with increasing concentration. Cobalt had the least effect on the morphology of the deposit, although it gradually increased the basal plane orientation with increasing concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Laist, R. B. Caples and G. T. Wever, in ‘Handbook of Nonferrous Metallurgy, Recovery of the Metals’ (edited by D. M. Liddell), McGraw Hill, New York (1945) p. 379.

    Google Scholar 

  2. F. S. Weimer, G. T. Wever and R. J. Lapee, in ‘Zine, The Science and Technology of the Metal, its Alloys and Compounds’ (edited by C. H. Mathewson), ACS Monograph Series, Reinhold, New York (1959) p. 174.

    Google Scholar 

  3. C. L. Mantell, ‘Electrochemical Engineering’, 4th edn. McGraw Hill, New York (1960) p. 210.

    Google Scholar 

  4. G. T. Wever,J. Metals 11 (1959) 130.

    Google Scholar 

  5. H. H. Fukubayashi, T. J. O'Keefe and W. C. Clinton, Bureau of Mines Renort of Investigations 7966, US Dept. of the Interior, Washington (1974).

    Google Scholar 

  6. R. C. Kerby and T. R. Ingraham, Mines Branch Research Report R243, Dept. of Energy, Mines and Resources, Ottawa (1971).

    Google Scholar 

  7. G. C. Bratt,Electrochem. Tech. 2 (1964) 323.

    Google Scholar 

  8. G. C. Bratt, in ‘The Aus. I.M.M. Conference, Tasmania, May, 1977’, Australasian Institute of Mining and Metallurgy, Melbourne (1977) p. 277.

    Google Scholar 

  9. M. Maja and P. Spinelli,J. Electrochem. Soc. 118 (1971) 1538.

    Google Scholar 

  10. M. Maja, N. Penazzi, R. Fratesi and G. Roventi,J. Electrochem. Soc. 129 (1982) 2695.

    Google Scholar 

  11. U. F. Turomshina and V. V. Stender,J. Appl. Chem. USSR 28 (1955) 347.

    Google Scholar 

  12. A. G. Pecherskaya and V. V. Stender,J. Appl. Chem. USSR 23 (1950) 975.

    Google Scholar 

  13. A. D'este and R. Guerriero,Montevecchio 16 (1965) 1.

    Google Scholar 

  14. M. Kett,Hutn. Listy 16 (1961) 669.

    Google Scholar 

  15. S. Ohyama and S. Morioka, in ‘Zine ′85, Proceedings of International Symposium on Extractive Metallurgy of Zinc’ (edited by K. Tozawa), Mining and Metallurgical Institute of Japan (1985) p. 219.

  16. T. Biegler, E. J. Frazer and T. Lwin, in ‘Research and Development in Extractive Metallurgy — 1987’, Australasian Institute of Mining and Metallurgy, Melbourne (1987) p. 203.

    Google Scholar 

  17. T. Biegler and E. J. Frazer,J. Appl. Electrochem. 16 (1986) 654.

    Google Scholar 

  18. E. J. Frazer and T. Lwin,J. Appl. Electrochem. 17 (1987) 453.

    Google Scholar 

  19. T. Biegler and D. A. Swift,Hydrometallurgy 6 (1981) 299.

    Google Scholar 

  20. P. A. Adcock, A. R. Ault and O. M. G. Newman,J. Appl. Electrochem. 15 (1985) 865.

    Google Scholar 

  21. D. J. MacKinnon, J. M. Brannen and R. C. Kerby,J. Appl. Electrochem. 9 (1979) 55.

    Google Scholar 

  22. U. F. Turomshina and V. V. Stender,J. Appl. Chem. USSR 28 (1955) 447.

    Google Scholar 

  23. D. J. MacKinnon, J. M. Brannen and R. M. Morrison,J. Appl. Electrochem. 12 (1982) 39.

    Google Scholar 

  24. E. J. Frazer,J. Electrochem. Soc. in press.

  25. L. F. G. Williams,J. Electrochem. Soc. 126 (1979) 566.

    Google Scholar 

  26. D. J. MacKinnon,J. Appl. Electrochem. 15 (1985) 953.

    Google Scholar 

  27. D. J. MacKinnon, R. M. Morrison and J. M. Brannen,J. appl. Electrochem. 16 (1986) 53.

    Google Scholar 

  28. R. Fratesi, G. Roventi, M. Maja and N. Penazzi,J. Appl. Electrochem. 10 (1980) 765.

    Google Scholar 

  29. Y.-M. Wang, T. J. O'Keefe and W. J. James,J. Electrochem. Soc. 127 (1980) 2589.

    Google Scholar 

  30. N. Matsuura and M. Kojima,Tokyo Univ., Coll. Gen. Ed., Sci. Pap. 11 (1952) 47.

    Google Scholar 

  31. I. W. Wark, in ‘Proceedings of the First Australian Conference on Electrochemistry, Sydney and Hobart, 1963’ (edited by J. A. Friend and F. Gutmann), Pergamon Press, London (1965) p. 889.

    Google Scholar 

  32. D. R. Fosnacht and T. J. O'Keefe,Met. Trans. B 14 (1983) 645.

    Google Scholar 

  33. I. R. Bellobono,Ind. Chim. Belge, Suppl. Chim. Civiliz. 32 (1967) 305.

    Google Scholar 

  34. O. Vennesland, H. Holtan and S. Solhjell,Acta Chem. Scand. 27 (1973) 846.

    Google Scholar 

  35. D. R. Fosnacht and T. J. O'Keefe,J. Appl. Electrochem. 10 (1980) 495.

    Google Scholar 

  36. T. J. O'Keefe and M. W. Mateer, in ‘Physical Chemistry of Extractive Metallurgy’ (edited by V. Kudryk and Y. K. Rao), Metallurgical Society of AIME, New York (1985) p. 165.

    Google Scholar 

  37. G. Steintveit and H. Holtan Jr,J. Electrochem. Soc. 107 (1960) 247.

    Google Scholar 

  38. C. J. Hamdorf and O. G. Woodward, in ‘Mining and Metallurgical Practices in Australasia’ (edited by J. T. Woodcock), Monograph Series No. 10, Australasian Institute of Mining and Metallurgy, Melbourne (1980) p. 254.

    Google Scholar 

  39. D. J. Robinson and T. J. O'Keefe,J. Appl. Electrochem. 6 (1976) 1.

    Google Scholar 

  40. R. Singh, T. J. O'Keefe, R. C. Kerby and K. Jibiki, in ‘Zinc ′85, Proceedings of International Symposium on Extractive Metallurgy of Zinc’ (edited by K. Tozawa), Mining and Metallurgical Institute of Japan (1985) p. 235.

  41. B. A. Lamping and T. J. O'Keefe,Met. Trans. B 7 (1976) 551.

    Google Scholar 

  42. D. J. MacKinnon and J. M. Brannen,J. Appl. Electrochem. 7 (1977) 451.

    Google Scholar 

  43. R. C. Kerby, Paper presented at 114th AIME Conference, New York, 24–28 February 1985 (Reference [3] quoted in [40].

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ault, A.R., Frazer, E.J. Effects of certain impurities on zinc electrowinning in high-purity synthetic solutions. J Appl Electrochem 18, 583–589 (1988). https://doi.org/10.1007/BF01022254

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01022254

Keywords

Navigation