Skip to main content
Log in

Long time tails in stationary random media. I. Theory

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Diffusion of moving particles in stationary disordered media is studied using a phenomenological mode-coupling theory. The presence of disorder leads to a generalized diffusion equation, with memory kernels having power law long time tails. The velocity autocorrelation function is found to decay like t−(d/2+1), while the time correlation function associated with the super-Burnett coefficient decays liket −d/2 for long times. The theory is applicable to a wide variety of dynamical and stochastic systems including the Lorentz gas and hopping models. We find new, general expressions for the coefficients of the long time tails which agree with previous results for exactly solvable hopping models and with the low-density results obtained for the Lorentz gas. Finally we mention that if the moving particles are charged, then the long time tails imply that there is an ωd/2 contribution to the low-frequency part of the frequency-dependent electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Lorentz,Proc. Amst. Acad. 7:438, 585, 684 (1905).

    Google Scholar 

  2. E. H. Hauge,Lecture Notes in Physics, Vol.31, G. Kirczenow and J. Marro, eds. (Springer-Verlag, Berlin, 1974); E. G. D. Cohen,Colloques Internationaux C.N.R.S. No. 236-. Theories cinetique classiques et relativistes.

    Google Scholar 

  3. J. M. J. van Leeuwen and A. Weyland,Physica 36:457 (1967);38:35 (1968).

    Google Scholar 

  4. S. Alexander, J. Bernasconi, W. R. Schneider, and R. Orbach,Rev. Mod. Phys. 53:175 (1981).

    Google Scholar 

  5. N. F. Mott and E. A. Davis,Electronic Processes in Non-Crystalline Materials, second ed. (Clarendon Press, Oxford, 1979).

    Google Scholar 

  6. B. J. Alder and T. E. Wainwright,Phys. Rev. A1:18 (1970).

    Google Scholar 

  7. J. R. Dorfman and E. G. D. Cohen,Phys. Rev. A6:776 (1972).

    Google Scholar 

  8. J. R. Dorfman and E. G. D. Cohen,Phys. Rev. A12:292 (1975).

    Google Scholar 

  9. P. Resibois and Y. Pomeau,Physica 72:493 (1974).

    Google Scholar 

  10. M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen,Phys. Rev. A4:2055 (1971);J. Stat. Phys. 15:7 (1967).

    Google Scholar 

  11. R. Zwanzig, K. S. J. Nordholm, and W. C. Mitchell,Phys. Rev. A5:2680 (1972).

    Google Scholar 

  12. D. Bedeaux and P. Mazur,Physica 70:505 (1974);Physica 76:247 (1974).

    Google Scholar 

  13. K. Kawasaki,Ann. Phys. 61:1 (1970).

    Google Scholar 

  14. P. C. Hohenberg and B. I. Halperin,Rev. Mod. Phys. 49:435 (1977).

    Google Scholar 

  15. S. Ma,Modern Theory of Critical Phenomena (W. A. Benjamin, London, 1976).

    Google Scholar 

  16. D. Forster, D. R. Nelson, and M. J. Stephen,Phys. Rev. A16:732 (1977).

    Google Scholar 

  17. W. W. Wood, inFundamental Problems in Statistical Mechanics 111, E. G. D. Cohen, ed. (North-Holland, Amsterdam, 1975).

    Google Scholar 

  18. J. J. Erpenbeck and W. W. Wood,J. Stat. Phys. 24:455 (1981).

    Google Scholar 

  19. D. J. Evans,Molec. Phys. 37:1745 (1979);J. Stat. Phys. 22:81 (1980);Physica 118A:51 (1983).

    Google Scholar 

  20. M. H. Ernst and A. Weyland,Phys. Lett. 34A:39 (1971).

    Google Scholar 

  21. C. Bruin,Phys. Rev. Lett. 29:1670 (1972);Physica 72:261 (1974).

    Google Scholar 

  22. J. C. Lewis and J. A. Tjon,Phys. Lett. 66A:349 (1978).

    Google Scholar 

  23. B. J. Alder and W. E. Alley,J. Stat. Phys. 19:341 (1978);Phys. Rev. Lett. 43:653 (1979); preprint November 1981.

    Google Scholar 

  24. W. E. Alley, Ph.D. thesis, Univ. of Calif., Davis (1979). B. J. Alder and W. E. Alley,Perspectives in Statistical Physics, H. J. Raveché, ed. (North-Holland, Amsterdam, 1981).

    Google Scholar 

  25. T. Keyes and J. Mercer,Physica 95A:473 (1979).

    Google Scholar 

  26. W. Götze, E. Leutheuser and S. Yip,Phys. Rev. A23:2634 (1981);Phys. Rev. A24:100 (1981).

    Google Scholar 

  27. A. J. Masters and T. Keyes,Phys. Rev. A25:1010 (1982),A26:2129 (1982);Physica 118A:395 (1983).

    Google Scholar 

  28. T. Keyes and J. W. Lyklema,J. Stat. Phys. 27:687 (1982).

    Google Scholar 

  29. J. Machta, M. H. Ernst, H. van Beijeren, and J. R. Dorfman,J. Stat. Phys. (to appear).

  30. P. J. H. Denteneer and M. H. Ernst,J. Phys. C 16:L961 (1983).

    Google Scholar 

  31. W. Götze,Philos. Mag. B43:219 (1981).

    Google Scholar 

  32. E. H. Hauge and E. G. D. Cohen,J. Math. Phys. 10:397 (1969).

    Google Scholar 

  33. H. van Beijeren, Rev.Mod. Phys. 54:195 (1982); H. van Beijeren and H. Spohn,J. Stat. Phys. 31:231 (1983).

    Google Scholar 

  34. P. Grassberger,Physica 103A:558 (1980).

    Google Scholar 

  35. M. H. Ernst and H. van Beijeren,J. Stat. Phys. 26:1 (1981).

    Google Scholar 

  36. J. Machta,Phys. Rev. B24:5260 (1981).

    Google Scholar 

  37. R. Zwanzig,J. Stat. Phys. 28:127 (1982).

    Google Scholar 

  38. J. W. Haus, K. W. Kehr, and K. Kitahara,Phys. Rev. B25:4918 (1982).

    Google Scholar 

  39. I. Webman and J. Klafter,Phys. Rev. B26:5950 (1982).

    Google Scholar 

  40. M. J. Stephen and R. Kariotis,Phys. Rev. B26:2917 (1982).

    Google Scholar 

  41. J. Machta,J. Stat. Phys. 30:305 (1983).

    Google Scholar 

  42. J. W. Haus, K. W. Kehr, and J. Lyklema,Phys. Rev. B25:2905 (1982).

    Google Scholar 

  43. V. Halpern,J. Phys. C 15:L027 (1982).

    Google Scholar 

  44. P. J. H. Denteneer and M. H. Ernst,Phys. Rev. B (to appear).

  45. S. John, H. Sompolinsky, and M. J. Stephen,Phys. Rev. B 27:5592 (1983).

    Google Scholar 

  46. T. M. Nieuwenhuizen,J. Phys. (to appear).

  47. P. Visscher, Private communication andPhys. Rev. B (to appear).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernst, M.H., Machta, J., Dorfman, J.R. et al. Long time tails in stationary random media. I. Theory. J Stat Phys 34, 477–495 (1984). https://doi.org/10.1007/BF01018555

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01018555

Key words

Navigation