Skip to main content
Log in

Noise-sustained structure, intermittency, and the Ginzburg-Landau equation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The time-dependent generalized Ginzburg-Landau equation is an equation that is related to many physical systems. Solutions of this equation in the presence of low-level external noise are studied. Numerical solutions of this equation in thestationary frame of reference and with anonzero group velocity that is greater than a critical velocity exhibit a selective spatial amplification of noise resulting in spatially growing waves. These waves in turn result in the formation of a dynamic structure. It is found that themicroscopic noise plays an important role in themacroscopic dynamics of the system. For certain parameter values the system exhibits intermittent turbulent behavior in which the random nature of the external noise plays a crucial role. A mechanism which may be responsible for the intermittent turbulence occurring in some fluid systems is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Shaw,Z. Naturforsch. 36a:80 (1981).

    Google Scholar 

  2. E. Ott,Rev. Mod. Phys. 53(4) Part 1:655 (1981).

    Google Scholar 

  3. Y. Kuramoto,Prog. Theor. Phys. 56:679 (1976);Suppl. Prog. Theor. Phys. 64:346 (1978).

    Google Scholar 

  4. R. G. Deissler,Rev. of Mod. Phys. 56(2) Part 1:223 (1984).

    Google Scholar 

  5. A. Brandstater, J. Swift, H. L. Swinney, A. Wolf, J. D. Farmer, E. Jen, and J. P. Crutchfield,Phys. Rev. Letters 51(16):935 (1983).

    Google Scholar 

  6. F. H. Busse, inChaos and Order in Nature, H. Haken, ed. (Springer-Verlag, Berlin, 1981).

    Google Scholar 

  7. J. D. Farmer, Sensitive dependence to noise without sensitive dependence to initial conditions (1982), Los Alamos Preprint LA-UR-83-1450; and Deterministic noise amplifiers (1984), Los Alamos Preprint, submitted toJ. Stat. Phys.

  8. L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon Press, London, 1959).

    Google Scholar 

  9. J. Watson,J. Fluid Mech. 14:211 (1962).

    Google Scholar 

  10. P. A. Sturrock,Phys. Rev. 112:1488 (1958).

    Google Scholar 

  11. R. J. Deissler,Phys. Lett. 100A:451 (1984).

    Google Scholar 

  12. A. C. Newell and J. A. Whitehead,J. Fluid Mech. 38:279 (1969).

    Google Scholar 

  13. S. Kogelman and R. C. Di Prima,Phys. Fluids 13:1 (1970).

    Google Scholar 

  14. K. Stewartson and J. T. Stuart,J. Fluid Mech. 48:529 (1971).

    Google Scholar 

  15. P. J. Blennerhassett,Phil. Trans. R. Soc. London 298A:43 (1980).

    Google Scholar 

  16. T. Watanabe,J. Phys. Soc. Japan 27:1341 (1969).

    Google Scholar 

  17. H. T. Moon, P. Huerre, and L. G. Redekopp,Phys. Rev. Lett. 49:458 (1982);Physica 7D:135 (1983).

    Google Scholar 

  18. K. Nozaki and N. Bekki,Phy. Rev. Lett. 51:2171 (1983).

    Google Scholar 

  19. L. R. Keefe, Dynamics of perturbed wavetrain solutions to the Ginzburg-Landau equation, Ph. D. thesis (1984).

  20. Y. Kuramoto and S. Koga,Phys. Lett. 92A:1 (1982).

    Google Scholar 

  21. R. J. Briggs,Electron-Stream Interaction with Plasmas (M. I. T. Press, Cambridge, Massachusetts, 1964).

    Google Scholar 

  22. A. Bers, inPlasma Physics, C. DeWitt and J. Peyraud, ed. (Gordon and Breach, New York, 1975).

    Google Scholar 

  23. P. Huerre and P. A. Monkewitz, Absolute and convective instabilities in free shear layers (1984) (submitted toJ. Fluid Mech.)

  24. G. Dee and J. S. Langer,Phys. Rev. Lett. 50:383 (1983).

    Google Scholar 

  25. C. M. Bender and S. A. Orszag,Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978).

    Google Scholar 

  26. L. Lapidus and G. F. Pinder,Numerical Solution of Partial Differential Equations in Science and Engineering (John Wiley and Sons, New York, 1982).

    Google Scholar 

  27. G. D. Smith,Numerical Solution of Partial Differential Equations: Finite Difference Methods (Claredon Press, Oxford, 1978).

    Google Scholar 

  28. H. F. Hameka,Quantum Theory of The Chemical Bond (Hafner Press, New York, 1975).

    Google Scholar 

  29. H. Schlichting,Boundary-Layer Theory (McGraw-Hill, New York, 1968).

    Google Scholar 

  30. F. M. White,Viscous Fluid Flow (McGraw-Hill, New York, 1974).

    Google Scholar 

  31. T. B. Benjamin and J. E. Feir,J. Fluid Mech. 27:417 (1983).

    Google Scholar 

  32. W. Eckhaus,Studies in Nonlinear Stability Theory (Springer, Berlin, 1965).

    Google Scholar 

  33. J. T. Stuart and R. C. DiPrima,Proc. R. Soc. London, Ser. A 362:27 (1978).

    Google Scholar 

  34. H. L. Dryden, inTurbulent Flows and Heat Transfer, C. C. Lin, ed. (Princeton University Press, Princeton New Jersey, 1959).

    Google Scholar 

  35. J. Matthews and R. L. Walker,Mathematical Methods of Physics (W. A. Benjamin, Menlo Park, California, 1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deissler, R.J. Noise-sustained structure, intermittency, and the Ginzburg-Landau equation. J Stat Phys 40, 371–395 (1985). https://doi.org/10.1007/BF01017180

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01017180

Key words

Navigation