Skip to main content
Log in

Molecular dynamics calculations of the hard-sphere equation of state

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The equation of state of the hard-sphere fluid is studied by a Monte Carlomolecular dynamics method for volumes ranging from 25V 0 to 1.6V 0 , whereV 0 is the close-packed volume, and for system sizes from 108 to 4000 particles. TheN dependence of the equation of state is compared to the theoretical dependence given by Salsburg for theNPT ensemble, after correction for the ensemble difference, in order to obtain estimates for the thermodynamic limit. The observed values of the pressure are compared with both the [3/2] and the [2/3] Padé approximants to the virial series, using Kratky's value for the fifth virial coefficientB 5 and choosingB 6 andB 7, to obtain a least-squares fit. The resulting values ofB 6 andB 7 lie within the uncertainties of the Ree-Hoover-Kratky Monte Carlo estimates for these virial coefficients. The values ofB 8,B 9, andB 10 predicted by our optimal [3/2] approximant are also reported. Finally, the Monte Carlo-molecular dynamics equation of state is compared with a number of analytic expressions for the hard-sphere equation of state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,J. Chem. Phys. 21:1087 (1953).

    Google Scholar 

  2. W. W. Wood and J. D. Jacobson,J. Chem. Phys. 27:1207 (1957);12:292 (1975).

    Google Scholar 

  3. B. J. Alder and T. E. Wainwright,J. Chem. Phys. 27:1208 (1957).

    Google Scholar 

  4. W. W. Wood, Monte Carlo studies of simple liquid models, inPhysics of Simple Liquids, H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, eds. (North-Holland, Amsterdam, 1968), Chap. 5.

    Google Scholar 

  5. J. A. Barker and D. Henderson,Molec. Phys. 21:187 (1971).

    Google Scholar 

  6. J. A. Barker and D. Henderson,Rev. Mod. Phys. 48:587 (1976).

    Google Scholar 

  7. F. H. Ree and W. G. Hoover,J. Chem. Phys. 40:939 (1964);46:4181 (1967).

    Google Scholar 

  8. K. W. Kratky,Physica 85A:607 (1976);87A; 584 (1977).

    Google Scholar 

  9. A. Baram and M. Luban,J. Phys. C: Solid State Phys. 12; L659 (1979).

    Google Scholar 

  10. C. A. Angell, J. H. R. Clarke, and L. V. Woodcock, inAdvances in Chemical Physics, Vol. 48, S. A. Rice and E. Prigogine, eds. (Wiley, New York, 1981), p. 397.

    Google Scholar 

  11. W. W. Wood,J. Chem. Phys. 48:415 (1968);52:729 (1970).

    Google Scholar 

  12. W. W. Wood,Acta Phys. Austriaca,Suppl. X:451 (1973).

    Google Scholar 

  13. J. J. Erpenbeck and W. W. Wood,J. Stat. Phys. 24:455 (1981).

    Google Scholar 

  14. J. J. Erpenbeck and W. W. Wood, Molecular Dynamics Techniques for Hard Core Systems, inModern Theoretical Chemistry, Vol. 6, Statistical Mechanics, Part B: Time Dependent Process, B. J. Berne, ed. (Plenum Press, New York, 1977).

    Google Scholar 

  15. B. Jansson,Random Number Generators (Pettersons, Stockholm, 1966).

    Google Scholar 

  16. Z. W. Salsburg,J. Chem. Phys. 44:3090 (1966);45:2719 (1966).

    Google Scholar 

  17. G. A. Baker,Essentials of Padé Approximants (Academic Press, New York, 1975).

    Google Scholar 

  18. J. A. Devore and E. Schneider,J. Chem. Phys. 77:1067 (1982).

    Google Scholar 

  19. V. C. Aguilera-Navarro, M. Fortes, M. de Llano, and A. Piastino,J. Chem. Phys. 76:749 (1982); G. A. Baker, Jr., G. Gutierrez, and M. de Llano,Ann. Phys. (N.Y.) (in press).

    Google Scholar 

  20. N. F. Carnahan and K. E. Starling,J. Chem. Phys. 51:635 (1969).

    Google Scholar 

  21. J. K. Percus and G. J. Yevick,Phys. Rev. 110:1 (1958); M. S. Wertheim,J. Math. Phys. 5:643 (1964); E. Thiele,J. Chem. Phys. 39:474 (1963).

    Google Scholar 

  22. L. V. Woodcock,J. Chem. Soc. Faraday Trans. 2 72:731 (1976).

    Google Scholar 

  23. F. C. Andrews,J. Chem. Phys. 64:1941 (1976).

    Google Scholar 

  24. R. J. Speedy,J. Chem. Soc. Faraday Trans. 2 75:1643 (1979)

    Google Scholar 

  25. S. Shinomoto,J. Stat. Phys. 32:105 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by the Office of Basic Energy Sciences, U.S. Department of Energy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erpenbeck, J.J., Wood, W.W. Molecular dynamics calculations of the hard-sphere equation of state. J Stat Phys 35, 321–340 (1984). https://doi.org/10.1007/BF01014387

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01014387

Key words

Navigation