Skip to main content
Log in

Cyanogenesis—a general phenomenon in the lepidoptera?

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

There are two different pathways known to be used for the detoxification of hydrocyanic acid in insects, viz., rhodanese and β-cyano-l-ala-nine synthase. We consider the latter to be indicative for cyanogenesis, while rhodanese might, in general, play a more important role in sulfur transfer for protein synthesis. This paper reports on the distribution of β-cyano-l-alanine (BCA) in the Lepidoptera. First reports of cyanogenesis are presented for the following families: Papilionidae, Pieridae, Lycaenidae, Hesperiidae, Lymantriidae, Arctiidae, Notodontidae, Megalopygidae, Limacodidae, Cymatophoridae, Noctuidae, Geometridae, and Yponomeutidae. New and old records for three other families, the Nymphalidae, Zygaenidae, and Heterogynidae, are included to complete the present state of knowledge. Special emphasis has been laid on the Nymphalidae, where BCA has been detected in eight subfamilies. Taxonomic, geographic, and seasonal variation has been found in a number of cases. In all cases observed so far, the source of cyanogenesis in the Lepidoptera is most probably the cyanoglucosides linamarin and lotaustralin, although cyanogenesis based on mustard oil glucosides and cyclopentenoid glucosides might occur as well. BCA has been found in both cryptic and aposematic species, including taxa such as the Pieridae, Danainae, Ithomiinae, and Arctiidae, where the defensive biology is believed to be linked with other compounds, like mustard oil glucosides, cardenolides, or pyrrolizidine alkaloids. The ecological interaction and significance of such secondary compounds is not yet understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beesley, S.G., Compton, S.G., andJones, D.A. 1985. Rhodanese in insects.J. Chem. Ecol. 11:45–50.

    Google Scholar 

  • Blum, M.S., Jones, T.H., House, G.J., andTschinkel, W.R. 1981. Defensive secretions of tiger beetles: Cyanogenic basis.Comp. Biochem. Physiol. 69B:903–904.

    Google Scholar 

  • Boppré, M. 1986. Insects pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids).Naturwissenschaften 73:17–26.

    Google Scholar 

  • Brattsten, L.B., Samuelian, J.H., Long, K.Y., Kincaid, S.A., andEvans, C.K. 1983. Cyanide as a feeding stimulant for the southern armyworm,Spodoptera eridiana.Ecol. Entomol. 8:125–132.

    Google Scholar 

  • Brock, J.P. 1971. A contribution towards an understanding of the morphology and phytogeny of the ditrysian Lepidoptera.J. Nat. Hist. 5:29–102.

    Google Scholar 

  • Brower, L.P., McEvoY, P.B., Williamson, K.L., andFlannery, M.A. 1972. Variation in cardiac glycoside content of monarch butterflies from natural populations in eastern North America.Science 10:426–429.

    Google Scholar 

  • Brower, L.P., Gibson, D.O., Mottit, C.M., andPanchen, A.L. 1978. Cardenolide content ofDanaus chrysippus butterflies from three areas of East Africa.Biol. J. Linn. Soc. 10:251–273.

    Google Scholar 

  • Conn, E.E. 1979. Biosynthesis of cyanogenic glucosides.Naturwissenschaften 66:28–34.

    Google Scholar 

  • Conn, E.E. 1981a. Biosynthesis of cyanogenic glycosides, pp. 183–196,in B. Vennesland, E.E. Conn, C. Knowles, J. Westley, and F. Wissing. (eds.), Cyanide in Biology. Academic Press, London.

    Google Scholar 

  • Conn, E.E. 1981b. Cyanogenic glycosides,in P.K. Stumpf and E.E. Conn (eds.). The Biochemistry of Plants. A Comprehensive Treatise, Vol. 7, Secondary Plant Products. Academic Press, New York.

    Google Scholar 

  • Davis, R.H., andNahrstedt, A. 1979. Linamarin and lotaustralin as the source of Cyanide inZygaena filipendulae L. (Lepidoptera).Comp. Biochem. Physiol. 64B:395–397.

    Google Scholar 

  • Davis, R.H., andNahrstedt, A. 1982. Occurrence and variation of the cyanogenic glucosides linamarin and lotaustralin in species of the Zygaenidae (Insecta: Lepidoptera).Comp. Biochem. Physiol. 71B:329–332.

    Google Scholar 

  • Davis, R.H. andNahrstedt, A. 1984. Cyanogenesis in insects, pp. 635–654,in G.A. Kerkut and L.I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 11, Pharmacology. Pergamon Press, Oxford.

    Google Scholar 

  • Duffey, S.S. 1981. Cyanide in arthropods, pp. 385–414,in B. Vennesland, E.E. Conn, C. Knowles, J. Westley, and F. Wissing, (eds.). Cyanide in Biology. Academic Press, London.

    Google Scholar 

  • Franzl, S., andNaumann, C.M. 1984. Morphologie und Histologie der Wehrsekretbehälter erwachsener Raupen vonZygaena trifolii (Lepidoptera, Zygaenidae).Entomol. Abh. St. Mus. Tierk. Dresden 48:1–12.

    Google Scholar 

  • Franzl, S., andNaumann, C.M. 1985. Cuticular cavities: Storage chambers for cyanoglucoside-containing defensive secretions in larvae of a zygaenid moth.Tissue Cell 17:267–278.

    Google Scholar 

  • Hegnauer, R. 1962–1973. Chemotaxonomie der Pflanzen, Vols. I-VI. Birkhäuser, Basel.

    Google Scholar 

  • Henrickson, H.R., andConn, E.E. 1969. Cyanide metabolism in higher plants.J. Biol. Chem. 244:2632–2640.

    Google Scholar 

  • Jones, D.A. 1979. Chemical defense: Primary or secondary function.Am. Nat. 113:445–451.

    Google Scholar 

  • Jones, D.A., Parson, J., andRothschild, M. 1962. Release of hydrocyanic acid from crushed tissues of all stages in the life cycle of species of the Zygaeninae (Lepidoptera).Nature 193:52–53.

    Google Scholar 

  • Long, K.Y., andBrattsten, L.B. 1982. Is rhodanese important in the detoxification of cyanide in the armyworm (Spodoptera eridiana Cramer) larvae?Insect Biochem. 12:367–375.

    Google Scholar 

  • Moore, B.P. 1967. Hydrogen cyanide in the defensive secretions of larval Paropsini (Coleoptera: Chrysomelidae).J. Aust. Entomol. Soc. 6:36–38.

    Google Scholar 

  • Muhtasib, H., andEvans, D.L. 1987. Linamarin and histamine in the defensive of adultZygaena filipendulae.J. Chem. Ecol. 13:133–142.

    Google Scholar 

  • Nahrstedt, A., andDavis, R.H. 1981. The occurrence of the cyanoglucosides linamarin and lotaustralin inAcraea andHeliconius butterflies.Comp. Biochem. Physiol. 68B:575–577.

    Google Scholar 

  • Nahrstedt, A., andDavis, R.H. 1983. Occurrence, variation and biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in species of the Heliconiini (Insecta, Lepidoptera).Comp. Biochem. Physiol. 75B:65–73.

    Google Scholar 

  • Nahrstedt, A., andDavis, R.H. 1986. (R)Mandelonitrile and prunasin, the sources of hydrogen cyanide in all stages ofParopsis atomaria (Coleoptera, Chrysomelidae).Z. Naturforsch. 41C:928–934.

    Google Scholar 

  • Naumann, C.M. 1985. Phylogenetische Systematik und klassisctypologische Systematik—mit einigen Anmerkungen zu stammesgeschichtlichen Fragen bei den Zygaenidae (Lepidoptera).Mitt. Muench. Entomol. Ges. 74:1–35.

    Google Scholar 

  • Parsons, J., andRothschild, M. 1962. Rhodanese in the blow-fly,Calliphora vomitoria, L.J. Insect. Physiol. 8:285–286.

    Google Scholar 

  • Parsons, J., andRothschild, M. 1964. Rhodanese in the larva and pupa of the common blue butterfly (Polyommatus icarus Rott.) (Lepidoptera).Entomol. Gaz. 15:58–59.

    Google Scholar 

  • Povolny, M., andWeyda, F. 1981. On the glandular character of larval integument in the genusZygaena (Lepidoptera, Zygaenidae).Acta Entomol. Bohemoslov, 78:273–279.

    Google Scholar 

  • Rothschild, M. 1985. British aposematic Lepidoptera, pp. 8–62,in J. Heath and A.M. Emmet (eds.), The moths and butterflies of Great Britain and Ireland. Harley Books, Martins/Essex.

    Google Scholar 

  • Stahl, E., andKaltenbach, U. 1961. Dünnschicht-Chromatographie. VI. Mitteilung: Spurenanalyse von Zuckergemischen auf Kieselgel G-Schichten.J. Chromatogr. 5:351–355.

    Google Scholar 

  • Volini, M., andAlexander, K. 1981. Multiple forms and multiple functions of the rhodaneses, pp. 77–91,in B. Vennesland, E.E. Conn, C. Knowles, J. Westley, and F. Wissing. (eds.). Cyanide in Biology. Academic Press, London.

    Google Scholar 

  • Witthohn, K., andNaumann, C.M. 1984a. Qualitative and quantitative studies on the compounds ofZygaena trifolii (Esper, 1783) (Insecta, Lepidoptera, Zygaenidae).Comp. Biochem. Physiol. 79C:103–106.

    Google Scholar 

  • Witthohn, K., andNaumann, C.M. 1984b. Die Verbreitung des β-Cyan-l-alanin bei cyanogenen Lepidopteren.Z. Naturforsch. 39c:837–840.

    Google Scholar 

  • Wray, V., Davis, R.H., andNahrstedt, A. 1983. Biosynthesis of cyanogenic glucosides in butterflies and moths; incorporation of valine and isoleucine into linamarin and lotaustralin byZygaena andHeliconius species (Lepidoptera).Z. Naturforsch. 38c:583–588.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witthohn, K., Naumann, C.M. Cyanogenesis—a general phenomenon in the lepidoptera?. J Chem Ecol 13, 1789–1809 (1987). https://doi.org/10.1007/BF01013229

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01013229

Key words

Navigation