Skip to main content
Log in

A Monte Carlo study of the classical two-dimensional one-component plasma

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present results from extensive Monte Carlo simulations of the fluid phase of the two-dimensional classical one-component plasma (OCP). The difficulties associated with the infinite range of the logarithmic Coulomb interaction are eliminated by confining the particles to the surface of a sphere. The results are compared to those obtained for a planar system with screened Coulomb interactions and periodic boundary conditions; in this case the infinite tail of the Coulomb interaction is treated as a perturbation. The “exact” simulation results are used to test various approximate theories, including a semiempirical modification of the hypernetted-chain (HNC) integral equation. The OCP freezing transition is located at a couplingγ= e2/kBT−140.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Baus and J. P. Hansen,Phys. Rep. 59:1 (1980).

    Google Scholar 

  2. C. Deutsch, Y. Furutani, and M. M. Gombert,Phys. Rep. 69:85 (1981).

    Google Scholar 

  3. E. H. Hauge and P. C. Hemmer,Phys. Norv. 5:209 (1971).

    Google Scholar 

  4. C. Deutsch, H. E. DeWitt, and Y. Furutani,Phys. Rev. A 20:2631 (1979).

    Google Scholar 

  5. K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjolander,Phys. Rev. 176:589 (1968).

    Google Scholar 

  6. R. Calinon, K. I. Golden, G. Kaiman, and D. Merlini,Phys. Rev. A 20:329 (1979).

    Google Scholar 

  7. H. Totsuji and S. Ichimaru,Progr. Theor. Phys. 50:753 (1973);52:42 (1974).

    Google Scholar 

  8. P. Bakshi, R. Calinon, K. I. Golden, G. Kaiman, and D. Merlini,Phys. Rev. A 23:1915 (1981).

    Google Scholar 

  9. J. P. Hansen and D. Levesque,J. Phys. C 14:L603 (1981).

    Google Scholar 

  10. A. Alastuey and B. Jancovici,J. Phys. 42:1 (1981).

    Google Scholar 

  11. B. Jancovici,Phys. Rev. Lett. 46:386 (1981).

    Google Scholar 

  12. N. D. Mermin,Phys. Rev. 171:272 (1968).

    Google Scholar 

  13. R. R. Sari and D. Merlini,J. Stat. Phys. 14:91 (1976).

    Google Scholar 

  14. H. Totsuji,Phys. Rev. A 19:2433 (1979).

    Google Scholar 

  15. Y. Rosenfeld, to be published.

  16. M. Navet and E. Jamin, unpublished results.

  17. S. G. Brush, H. L. Sahlin, and E. Teller,J. Chem. Phys. 45:2102 (1966).

    Google Scholar 

  18. J. P. Hansen, D. Levesque, and J. J. Weis,Phys. Rev. Lett. 43:979 (1979).

    Google Scholar 

  19. D. M. Ceperley and G. V. Chester,Phys. Rev. A 15:755 (1977).

    Google Scholar 

  20. H. Totsuji,Phys. Rev. A 17:399 (1978); R. C. Gann, S. Chakravarty, and G. V. Chester,Phys. Rev. B 20:326 (1979).

    Google Scholar 

  21. R. K. Kalia, P. Vashishta, S. W. de Leeuw, and A. Rahman,J. Phys. C 14:L991 (1981).

    Google Scholar 

  22. J. M. Caillol,J. Phys. Lett. (Paris) 42:L245 (1981).

    Google Scholar 

  23. N. A. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. M. Teller, and E. Teller,J. Chem. Phys. 21:1087 (1953).

    Google Scholar 

  24. H. E. DeWitt,Phys. Rev. A 14:1290 (1976).

    Google Scholar 

  25. W. L. Slattery, G. D. Doolen, and H. E. DeWitt,Phys. Rev. A 21:2087 (1980).

    Google Scholar 

  26. J. P. Hansen,Phys. Rev. A 8:3096 (1973).

    Google Scholar 

  27. F. Lado,Phys. Rev. 135:A1013 (1964).

    Google Scholar 

  28. Y. Rosenfeld and N. W. Ashcroft,Phys. Rev. A 20:1208 (1979).

    Google Scholar 

  29. E. L. Pollock and J. P. Hansen,Phys. Rev. A 8:3110 (1973).

    Google Scholar 

  30. J. D. Weeks,Phys. Rev. B 24:1530 (1981).

    Google Scholar 

  31. J. Q. Broughton, G. H. Gilmer, and J. D. Weeks, to be published.

  32. D. R. Nelson and B. I. Halperin,Phys. Rev. B 19:2457 (1979).

    Google Scholar 

  33. B. J. Alder and T. Wainwright,Phys. Rev. 127:359 (1962).

    Google Scholar 

  34. J. P. Hansen and D. Schiff,Mol. Phys. 25:1281 (1973).

    Google Scholar 

  35. J. P. Hansen and L. Verlet,Phys. Rev. 184:151 (1969).

    Google Scholar 

  36. J. P. Hansen,J. Phys. Lett. (Paris) 42:L397 (1981).

    Google Scholar 

  37. J. D. Talman,J. Comp. Phys. 29:35 (1978).

    Google Scholar 

  38. J. M. Caillol, D. Levesque, and J. J. Weis,Mol. Phys. 44:733 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caillol, J.M., Levesque, D., Weis, J.J. et al. A Monte Carlo study of the classical two-dimensional one-component plasma. J Stat Phys 28, 325–349 (1982). https://doi.org/10.1007/BF01012609

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01012609

Key words

Navigation