Skip to main content
Log in

Statistical theory of energy levels and random matrices in physics

  • Review Article
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper the physical aspects of the statistical theory of the energy levels of complex physical systems and their relation to the mathematical theory of random matrices are discussed. After a preliminary introduction we summarize the symmetry properties of physical systems. Different kinds of ensembles are then discussed. This includes the Gaussian, orthogonal, and unitary ensembles. The problem of eigenvalue-eigenvector distributions of the Gaussian ensemble is then discussed, followed by a discussion on the distribution of the widths. In the appendices we discuss the symplectic group and quaternions, and the Gaussian ensemble in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Schiff,Quantum Mechanics, 2nd ed. McGraw-Hill, New York (1955).

    Google Scholar 

  2. L. S. Kisslinger and R. A. Sorensen,Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd 32, No. 9 (1960).

    Google Scholar 

  3. M. Baranger, Extension of the Shell Model for Heavy Spherical Nuclei,Phys. Rev. 120:957 (1960).

    Google Scholar 

  4. F. J. Dyson, Statistical Theory of the Energy Levels of Complex Systems. I,J. Math. Phys. 3:140 (1962).

    Google Scholar 

  5. J. L. Rosen, J. S. Desjardins, J. Rainwater, and W. W. Havens, Jr., Slow Neutron Resonance Spectroscopy. I. U238,Phys. Rev. 118:687 (1960); Slow Neutron Resonance Spectroscopy. II. Ag, Au, Ta,Phys. Rev. 120:2214 (1960).

    Google Scholar 

  6. E. P. Wigner, Random Matrices in Physics,SIAM Review 9:1 (1957).

    Google Scholar 

  7. H. Goldstein,Classical Mechanics, Addison-Wesley, Cambridge, Massachusetts (1950).

    Google Scholar 

  8. B. O. Koopman, Hamiltonian Systems and Transformations in Hilbert Space,Proc. Nat. Acad. Sci. U.S.A. 17:315 (1931).

    Google Scholar 

  9. G. D. Birkhoff, Proof of a Recurrence Theorem for Strongly Transitive Systems,Proc. Nat. Acad. Sci. U.S.A. 17:650 (1931).

    Google Scholar 

  10. G. D. Birkhoff, Proof of the Ergodic Theorem,Proc. Nat. Acad. Sci. U.S.A. 17:656 (1931).

    Google Scholar 

  11. J. von Neumann, Proof of the Quasi-Ergodic Hypothesis,Proc. Nat. Acad. Sci. U.S.A. 18:70 (1932).

    Google Scholar 

  12. G. D. Birkhoff and B. O. Koopman, Recent Contributions to the Ergodic Theory,Proc. Nat. Acad. Sci. U.S.A. 18:279 (1932).

    Google Scholar 

  13. F. Ajzenberg and T. Lauritsen, Energy Levels of Light Nuclei, V,Rev. Mod. Phys. 27:77 (1955).

    Google Scholar 

  14. E. P. Wigner, Statistical Properties of Real Symmetric Matrices with Many Dimensions, inCan. Math. Congr. Proc., Univ. of Toronto Press, Toronto, Canada (1957), p. 174.

    Google Scholar 

  15. J. W. Mihelich, G. Scharff-Goldhaber, and M. McKeown, Decay Scheme of the 5.5-Hr Isomer of Hf180,Phys. Rev. 94:794 (1954).

    Google Scholar 

  16. D. J. Hughes and J. A. Harvey, Neutron Cross Sections, Brookhaven National Laboratory Technical Report No. 325 (1955).

  17. J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Evidence for the 2π decay of theK 2 0 meson, Phys. Rev. Letters 13:138 (1964).

    Google Scholar 

  18. E. W. Beier, D. A. Buchholz, A. K. Mann, W. K. McFarlane, S. H. Parker, and J. B. Roberts, Experimental Tests of Discrete Symmetries in the DecaysK ± →π + π e +- v e ,Phys. Rev. Letters 29:511 (1972).

    Google Scholar 

  19. C. E. Porter, Fluctuations of Quantal Spectra, inStatistical Theories of Spectra: Fluctuations, C. E. Porter, ed., Academic Press, New York (1965).

    Google Scholar 

  20. B. van der Pol,Phil. Mag. 26 (7): 921 (1938).

    Google Scholar 

  21. B. van der Pol and H. Bremmer,Operational Calculus, Cambridge University Press, London and New York (1959).

    Google Scholar 

  22. D. N. Lehmer,List of Prime Numbers from 1 to 10,006,721, Hafner, New York (1956).

    Google Scholar 

  23. L. D. Landau and E. M. Lifshitz,Mechanics, Pergamon Press, New York (1960).

    Google Scholar 

  24. E. P. Wigner,Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra, Academic Press, New York (1959).

    Google Scholar 

  25. N. Rosenzweig, inStatistical Physics, K. W. Ford, ed., W. A. Benjamin, New York (1963).

    Google Scholar 

  26. A. Messiah,Quantum Mechanics, Vols. I and II, Wiley, New York (1961).

    Google Scholar 

  27. G. C. Wick, Invariance Principles of Nuclear Physics,Ann. Rev. Nucl. Soc. 8:1 (1958).

    Google Scholar 

  28. H. A. Kramers,Proc. Acad. Sci. Amsterdam 33:959 (1930).

    Google Scholar 

  29. M. Tinkham,Group Theory and Quantum Mechanics, McGraw-Hill, New York (1964).

    Google Scholar 

  30. K. Wilson, Proof of a Conjecture by Dyson,J. Math. Phys. 3:1040 (1962).

    Google Scholar 

  31. L. K. Hua,Am. J. Math. 66:470 (1944).

    Google Scholar 

  32. C. Chevalley,Theory of Lie Groups, Princeton University Press, Princeton, New Jersey (1946).

    Google Scholar 

  33. H. Weyl,The Classical Groups, Princeton University Press, Princeton, New Jersey (1946).

    Google Scholar 

  34. F. J. Dyson, The Threefold Way: Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics,J. Math. Phys. 3:1199 (1962).

    Google Scholar 

  35. E. P. Wigner, On a Class of Analytic Functions from the Quantum Theory of Collisions,Ann. Math. 53:36 (1951).

    Google Scholar 

  36. E. P. Wigner, Characteristic Vectors of Bordered Matrices with Infinite Dimensions,Ann. Math. 62:548 (1955).

    Google Scholar 

  37. E. P. Wigner, Characteristic Vectors of Bordered Matrices with Infinite Dimensions II,Ann. Math. 65:203 (1957).

    Google Scholar 

  38. E. P. Wigner, On the Distribution of the Roots of Certain Symmetric Matrices,Ann. Math. 67:325 (1958).

    Google Scholar 

  39. C. E. Porter and N. Rosenzweig, Statistical Properties of Atomic and Nuclear Spectra,Suomalaisen Tiedeakatemian Toimituksia (Ann. Acad. Sci. Fennicae) AVI, No. 44 (1960).

  40. C. E. Porter and N. Rosenzweig, Repulsion of Energy Levels in Complex Atomic Spectra,Phys. Rev. 120:1698 (1960).

    Google Scholar 

  41. B. V. Baronk, Accuracy of the Semicircle Approximation for the Density of Eigenvalues of Random Matrices,J. Math. Phys. 5:215 (1964).

    Google Scholar 

  42. F. Coeseter, The Symmetry of theS Matrix,Phys. Rev. 89:619 (1953).

    Google Scholar 

  43. J. B. Grag, J. Rainwater, J. S. Petersen, and W. W. Havens, Jr., Neutron Resonance Spectroscopy, III. Th233 and U238,Phys. Rev. 134:B985 (1964).

    Google Scholar 

  44. J. von Neumann and E. P. Wigner,Phys. Z. 30:467 (1929).

    Google Scholar 

  45. L. Landan and Ya. Smorodinsky,Lectures on the Theory of the Atomic Nucleus. State Tech.-Theoret. Lit. Press, Moscow (1955).

    Google Scholar 

  46. F. J. Dyson, Statistical Theory of the Energy Levels of Complex Systems, II,J. Math. Phys. 3:157 (1962).

    Google Scholar 

  47. M. Gaudin, Sur la loi limite de l'espacement des valeurs propres d'une matrice aleatoire,Nucl. Phys. 25:447 (1961).

    Google Scholar 

  48. E. P. Wigner,Conference on Neutron Physics by Time of Flight (Gatlinburg, Tennessee, November 1956), Oak Ridge National Lab. Report ORNL-2309 (1957).

  49. M. L. Mehta, On the Statistical Properties of the Level-spacings in Nuclear Spectra,Nucl. Phys. 18:395 (1960).

    Google Scholar 

  50. M. L. Mehta and M. Gaudin, On the Density of Eigenvalues of a Random Matrix,Nucl. Phys. 18:420 (1960).

    Google Scholar 

  51. F. J. Dyson, Statistical Theory of Energy Levels of Complex Systems, III,J. Math. Phys. 3:166 (1962).

    Google Scholar 

  52. P. S. Kahn, Energy Level Spacing Distributions,Nucl. Phys. 41:459 (1963).

    Google Scholar 

  53. C. E. Porter, Random Matrix Diagonalization-Some Numerical Computations,J. Math. Phys. 4:1039 (1963).

    Google Scholar 

  54. F. J. Dyson and M. L. Mehta, Statistical Theory of the Energy Levels of Complex Systems, IV,J. Math. Phys. 4:701 (1963).

    Google Scholar 

  55. J. Gunson, Proof of a Conjecture by Dyson in the Statistical Theory of Energy Levels,J. Math. Phys. 3:752 (1962).

    Google Scholar 

  56. M. L. Mehta and F. J. Dyson, Statistical Theory of the Energy Levels of Complex Systems, V,J. Math. Phys. 4:713 (1963).

    Google Scholar 

  57. C. E. Porter, Further Remarks on Energy Level Spacings,Nucl. Phys. 40:167 (1963).

    Google Scholar 

  58. P. B. Khan and C. E. Porter, Statistical Fluctuations of Energy Levels: The Unitary Ensemble,Nucl. Phys. 48:385 (1963).

    Google Scholar 

  59. H. S. Leff, Systematic Characterization ofmth-Order Energy Level Spacing distributions,J. Math. Phys. 5:756 (1964).

    Google Scholar 

  60. H. S. Leff, Class of Ensembles in the Statistical Theory of Energy Level Spectra,J. Math. Phys. 5:763 (1964).

    Google Scholar 

  61. D. Fox and P. B. Khan, Identity of thenth-Order Spacing Distributions for a Class of Hamiltonian,Phys. Rev. 134:B1151 (1964).

    Google Scholar 

  62. I. Gurevich and M. I. Pevsher, Repulsion of Nuclear Levels,Nucl. Phys. 2:575 (1956).

    Google Scholar 

  63. A. M. Lane, inConference on Neutron Physics by Time of Flight (Gatlinburg, Tennessee, November 1956), Oak Ridge National Lab. Report ORNL-2309 (1957).

  64. R. E. Trees, Repulsion of Energy Levels in Complex Atomic Spectra,Phys. Rev. 123:1293 (1961).

    Google Scholar 

  65. L. Dresner, Spacings of Nuclear Energy Levels,Phys. Rev. 113:232 (1959).

    Google Scholar 

  66. F. J. Dyson, A Brownian, Motion Model for the Eigenvalues of a Random Matrix,J. Math. Phys. 3:1191 (1962).

    Google Scholar 

  67. L. D. Favro, P. B. Khan, and M. L. Mehta, Concerning Polynomials Encountered in the Study of the Distribution Function of Spacings, Brookhaven National Lab. Report No. BNL-757 (T-280), September 1932.

  68. J. M. Scott,Phil. Mag. 45:1322 (1952).

    Google Scholar 

  69. C. E. Porter and R. G. Thomas, Fluctuations of Nuclear Reaction Widths,Phys. Rev. 104:483 (1956).

    Google Scholar 

  70. J. A. Harvey, D. J. Hughes, R. S. Carter, and V. E. Pilcher, Spacings and Neutron Widths of Nuclear Energy Levels,Phys. Rev. 99:10 (1955).

    Google Scholar 

  71. D. J. Hughes and J. A. Harvey, Size Distribution of Neutron Widths,Phys. Rev. 99:1032 (1955).

    Google Scholar 

  72. C. E. Porter, Statistics of Atomic Radiative Transition Probabilities,Phys. Letters 2:292 (1962).

    Google Scholar 

  73. N. Ullah and C. E. Porter, Expectation Value Fluctuations in the Unitary Ensemble,Phys. Rev. 132:948 (1963).

    Google Scholar 

  74. N. Ullah and C. E. Porter, Invariance Hypothesis and Hamiltonian Matrix Elements Correlations,Phys. Letters 6:301 (1963).

    Google Scholar 

  75. N. Rosenzweig, Anomalous Statistics of Partial Radiation Widths,Phys. Letters 6:123 (1963).

    Google Scholar 

  76. J. B. Grag,Statistical Properties of Nuclei, Plenum Press, New York (1972).

    Google Scholar 

  77. E. P. Wigner, Introductory Talk, in Ref. 78, p. 7.

    Google Scholar 

  78. G. Joos,Introduction to Theoretical Physics, Hafner Publication Co., New York (1958).

    Google Scholar 

  79. J. B. French and S. S. Wong, Validity of Random Matrix Theories for ManyParticle Systems,Phys. Letters 33B:449 (1970).

    Google Scholar 

  80. O. Bohigrs and J. Flores, Two-Body Random Hamiltonian and Level Density,Phys. Letters 34B:261 (1971).

    Google Scholar 

  81. J. B. French and F. S. Chang, Distribution Theory of Nuclear Level Densities and Related Quantities, Ref. 78, p. 405.

    Google Scholar 

  82. O. Bohigrs and J. Flores, Some Properties of Level Spacing Distributions, Ref. 78, p. 195.

    Google Scholar 

  83. R. Balian, Random Matrices and Information Theory,Nuovo Cimento B57:183 (1968).

    Google Scholar 

  84. S. N. Roy,Some Aspects of Multivariate Analysis, Wiley (1957).

  85. A. T. James, Distributions of Matrix Variates and Latent Roots Derived from Normal Samples,Ann. Math. Stat. 35:475 (1964).

    Google Scholar 

  86. P. R. Krishnaiah and T. C. Chang, On the Exact Distributions of the Extreme Roots of the Wishart and Manova Matrices,J. Multivariate Analysis 1:108 (1971).

    Google Scholar 

  87. P. R. Krishnaiah and V. B. Waikar, Exact Distributions of Any Few Ordered Roots of a Class of Random Matrices,J. Multivariate Analysis 1:308 (1971).

    Google Scholar 

  88. P. R. Krishnaiah and A. K. Chattopadhyay, review article in preparation.

  89. L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, inTranslations of Mathematical Monographs, Vol. 6, Am. Math. Soc., Providence, Rhode Island (1963); L. K. Hua,American Mathematical Society Translations, Vols. 32 and 33, Am. Math. Soc., Providence, Rhode Island (1963).

    Google Scholar 

  90. M. A. Naimark,Linear Representations of the Lorentz Group, Pergamon Press, London (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work done while the author was at the Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio, under Contract F33615-71-C-1463 through Technology Incorporated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmeli, M. Statistical theory of energy levels and random matrices in physics. J Stat Phys 10, 259–297 (1974). https://doi.org/10.1007/BF01012252

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01012252

Key words

Navigation