Skip to main content
Log in

Statistical mechanics of red blood cell aggregation: The distribution of rouleaux in thermal equilibrium

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

When placed in suspension red blood cells adhere face-to-face and form long, cylindrical, and sometimes branched structures called rouleaux. We use methods developed in statistical mechanics to compute various statistical properties describing the size and shape of rouleaux in thermodynamic equilibrium. This leads to analytical expressions for (1) the average number of rouleaux consisting ofn cells and havingm branch points; (2) the average number of cells per rouleau; (3) the average number of branch points per rouleau; and (4) the number of rouleaux withn cells in a system containing a total ofN cells. We also derive asymptotic formulas that simplify these analytic expressions, and present numerical comparisons of the exact and asymptotic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Fahraeus,Acta Med. Scand. 161:151 (1951).

    Google Scholar 

  2. R. R. Reich,Hematology: Physiopathologic Basis for Clinical Practice (Little, Brown and Co., New York, 1978).

    Google Scholar 

  3. S. Chien,The Red Blood Cell, Vol. II, D. Surgenor, ed. (Academic Press, New York, 1976), p. 1031.

    Google Scholar 

  4. A. S. Perelson and F. W. Wiegel,Biophys. J. 37:515 (1982).

    Google Scholar 

  5. R. W. Samsel and A. S. Perelson,Biophys. J. 37:493 (1982).

    Google Scholar 

  6. R. W. Samsel and A. S. Perelson, Kinetics of Rouleau Formation. II. Long-Time Behavior, Reversible Reactions and Loop Formation (in preparation).

  7. H. L. Goldsmith,J. Gen. Physiol. 52:5s (1968).

    Google Scholar 

  8. S. G. Mason and H. L. Goldsmith,Circulatory and Respiratory Mass Transport, G. E. W. Wolstenholme and J. Knight, eds. (Little, Brown & Co., Boston, 1969), p. 105.

    Google Scholar 

  9. F. Gauthier, H. L. Goldsmith, and S. G. Mason,Rheol. Acta 10:344 (1971).

    Google Scholar 

  10. F. Gauthier, H. L. Goldsmith, and S. G. Mason,Trans. Soc. Rheol. 15:297 (1971).

    Google Scholar 

  11. P. M. Adler,AIChE J. 25:487 (1979).

    Google Scholar 

  12. F. W. Wiegel,Lecture Notes in Physics 121 (Springer, Heidelberg, 1980).

    Google Scholar 

  13. P. Pfeuty and G. Toulouse,Introduction to the Renormalization Group and to Critical Phenomena (Wiley, London, 1977).

    Google Scholar 

  14. P. G. de Gennes,Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, 1979).

    Google Scholar 

  15. D. Stauffer,Physica 106A:177 (1981).

    Google Scholar 

  16. R. K. Pathria,Statistical Mechanics (Pergamon, New York, 1972).

    Google Scholar 

  17. D. ter Haar,Elements of Statistical Mechanics (Holt, Rinehart and Winston, New York, 1954).

    Google Scholar 

  18. K. Huang,Statistical Mechanics (Wiley, New York, 1963).

    Google Scholar 

  19. F. Reif,Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965).

    Google Scholar 

  20. E. Donoghue and J. H. Gibbs,J. Chem. Phys. 70:2346 (1979).

    Google Scholar 

  21. E. Donoghue,J. Chem. Phys. 77:4236 (1982).

    Google Scholar 

  22. M. Gō,J. Phys. Soc. Jpn. 23:597 (1967).

    Google Scholar 

  23. F. W. Wiegel, Conformational Phase Transitions in a Macromolecule: Exactly Solvable Models, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and M. S. Green, eds. (Academic, London, 1982).

    Google Scholar 

  24. J. Hijmans,J. Chem. Phys. 47:5116 (1967).

    Google Scholar 

  25. P. G. de Gennes,Biopolymers 6:715 (1968).

    Google Scholar 

  26. F. Harary,Graph Theory (Academic Press, New York, 1969).

    Google Scholar 

  27. E. C. Titchmarsh,The Theory of Functions (Oxford Univ. Press, Oxford, 1960).

    Google Scholar 

  28. N. G. de Bruijn,Asymptotic Methods in Analysis (North Holland, Amsterdam, 1958).

    Google Scholar 

  29. M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (Dover, New York, 1970).

    Google Scholar 

  30. C. Truesdell,Ann. Math. 46:144 (1945).

    Google Scholar 

  31. H. B. Dwight,Mathematical Tables of Elementary and Some Higher Mathematical Functions (Dover, New York, 1958), pp. 210–215.

    Google Scholar 

  32. P. Flory,Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953).

    Google Scholar 

  33. J. B. Miale,Laboratory Medicine Hematology, 5th ed. (Mosby, St. Louis, 1977).

    Google Scholar 

  34. S. Chien, InBioelectrochemistry: Ions, Surfaces, Membranes, M. Blank, ed. (Amer. Chem. Soc., Washington, D.C., 1980), pp. 3–38.

    Google Scholar 

  35. S. Chien, InTopics in Bioelectrochemistry and Bioenergetics, Vol. 4, G. Milazzo, ed. (Wiley, New York, 1981), pp. 73–131.

    Google Scholar 

  36. T. J. Dekker,Constructive Aspects of the Fundamental Theorem of Algebra, Proc. 1967 Symp. IBM Research Lab. Zürich-Rüschlikon Switzerland, B. Dejon and P. Henrici, eds. (Wiley, New York, 1969), pp. 37–48.

    Google Scholar 

  37. F. Harary and E. Palmer,Graphical Enumeration (Academic Press, New York, 1973).

    Google Scholar 

  38. W. H. Stockmayer,J. Chem. Phys. 11:45 (1943).

    Google Scholar 

  39. M. Gordon,Proc. Roy. Soc. London A268:240 (1962).

    Google Scholar 

  40. I. J. Good,Proc. Roy. Soc. London A272:54 (1963).

    Google Scholar 

  41. C. A. Macken and A. S. Perelson, An Application of Branching Processes to the Study of Multivalent Ligand-Multivalent Receptor Interactions on Cell Surfaces,Lecture Notes in Biomathematics (Springer Verlag, New York, in press).

  42. P. J. Flory,J. Am. Chem. Soc. 63:3091 (1941).

    Google Scholar 

  43. G. R. Dobson and M. Gordon,J. Chem. Phys. 41:2389 (1964).

    Google Scholar 

  44. R. M. Ziff and G. Stell,J. Chem. Phys. 73:3492 (1980).

    Google Scholar 

  45. J. Goldstone, H. Schmid-Schönbein, and R. Wells,Microvasc. Res. 2:273 (1970).

    Google Scholar 

  46. E. Ponder,Quart. J. Exp. Physiol. 16:173 (1927).

    Google Scholar 

  47. D. Kernick, A. W. L. Jay, S. Rowlands, and L. Skibo,Can. J. Physiol. Pharmacol. 51:690 (1973).

    Google Scholar 

  48. H. Schmid-Schönbein, P. Gaehtgens, and H. Hirsh,J. Clin. Invest. 47:1447 (1968).

    Google Scholar 

  49. H. Schmid-Schönbein, E. Volger, and H. J. Klose,Pflügers Arch. 333:140 (1972).

    Google Scholar 

  50. S. Usami, R. G. King, S. Chien, R. Skalak, C. R. Huang, and A. L. Copley,Biorheology 12:323 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiegel, F.W., Perelson, A.S. Statistical mechanics of red blood cell aggregation: The distribution of rouleaux in thermal equilibrium. J Stat Phys 29, 813–848 (1982). https://doi.org/10.1007/BF01011794

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011794

Key words

Navigation