Skip to main content
Log in

Dynamics of the formation of two-dimensional ordered structures

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The growth of ordered domains in lattice gas models, which occurs after the system is quenched from infinite temperature to a state below the critical temperatureT c, is studied by Monte Carlo simulation. For a square lattice with repulsion between nearest and next-nearest neighbors, which in equilibrium exhibits fourfold degenerate (2×1) superstructures, the time-dependent energy E(t), domain size L(t), and structure functionS(q, t) are obtained, both for Glauber dynamics (no conservation law) and the case with conserved density (Kawasaki dynamics). At late times the energy excess and halfwidth of the structure factor decrease proportional tot −x, whileL(t) ∝ t x, where the exponent x=1/2 for Glauber dynamics and x≈1/3 for Kawasaki dynamics. In addition, the structure factor satisfies a scaling lawS(k,t)=t 2xS(ktx). The smaller exponent for the conserved density case is traced back to the excess density contained in the walls between ordered domains which must be redistributed during growth. Quenches toT>T c, T=Tc (where we estimate dynamic critical exponents) andT=0 are also considered. In the latter case, the system becomes frozen in a glasslike domain pattern far from equilibrium when using Kawasaki dynamics. The generalization of our results to other lattices and structures also is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Lifshitz,Zh. Eksp. Teor. Fiz. 42:1354 (1962) [Sov. Phys. JETP 15:939 (1962)].

    Google Scholar 

  2. M. Hillert,Acta Met. 13:227 (1965).

    Google Scholar 

  3. N. P. Louat,Acta Met. 22:721 (1974).

    Google Scholar 

  4. S. K. Chan,J. Chem. Phys. 67:5755 (1977).

    Google Scholar 

  5. K. Kawasaki, M. C. Yalabik, and J. D. Gunton,Phys. Rev. B 17:455 (1978).

    Google Scholar 

  6. S. M. Allen and J. W. Cahn,Acta Met. 27:1085 (1979).

    Google Scholar 

  7. C. Billotet and K. Binder,Z. Phys. B32:195 (1979).

    Google Scholar 

  8. M. K. Phani, J. L. Lebowitz, M. H. Kalos, and O. Penrose,Phys. Rev. Lett. 45:366 (1980).

    Google Scholar 

  9. P. S. Sahni and J. D. Gunton,Phys. Rev. Lett. 45:369 (1980);47:1754 (1981).

    Google Scholar 

  10. P. S. Sahni, G. Dee, J. D. Gunton, M. K. Phani, J. L. Lebowitz, and M. H. Kalos,Phys. Rev. B 24:410 (1981).

    Google Scholar 

  11. S. A. Safran,Phys. Rev. Lett. 46:1581 (1981).

    Google Scholar 

  12. H. Furukawa,Phys. Rev. A 23:1535 (1981);28:1717 (1983).

    Google Scholar 

  13. S. A. Safran, P. S. Sahni, and G. S. Grest,Phys. Rev. B 26:466 (1982).

    Google Scholar 

  14. P. S. Sahni and G. S. Grest,J. Appl. Phys. 53:8002 (1982).

    Google Scholar 

  15. T. Ohta, D. Jasnow, and K. Kawasaki,Phys. Rev. Lett. 49:223 (1982).

    Google Scholar 

  16. P. S. Sahni, G. S. Grest, and S. A. Safran,Phys. Rev. Lett. 50:60 (1983); G. S. Grest, S. A. Safran, and P. S. Sahni,J. Magn. Mag. Mat. 31–34:1011 (1983); S. A. Safran, P. S. Sahni, and G. S. Grest,Phys. Rev. B 28:2693 (1983).

    Google Scholar 

  17. P. S. Sahni, G. S. Grest, M. P. Anderson, and D. J. Srolowitz,Phys. Rev. Lett. 50:63 (1983); D. J. Srolowitz, M. P. Anderson, G. S. Grest, and P. S. Sahni,Script Met. 17:241 (1983); P. S. Sahni, D. J. Srolowitz, G. S. Grest, M. P. Anderson, and S. A. Safran,Phys. Rev. B 28:2705 (1983).

    Google Scholar 

  18. M. Grant and J. D. Gunton,Phys. Rev. B 28:5496 (1983).

    Google Scholar 

  19. K. Kaski and J. D. Gunton, preprint.

  20. K. Kaski, M. C. Yalabik, J. D. Gunton, and P. S. Sahni, preprint.

  21. E. Burke and D. Turnbull,Prog. Metal Phys. 3:220 (1952).

    Google Scholar 

  22. T. Hashimoto, T. Miyoshi, and M. Ohtsuka,Phys. Rev. B 13:1119 (1976); T. Hashimoto, K. Nishimura, and Y. Takeuchi,Phys. Lett. 65A:250 (1978); M. Sato and K. Mirakawa,J. Phys. Soc. Japan 42:433 (1977).

    Google Scholar 

  23. M. G. Lagally, G. C. Wong, and T. M. Lu,CRC Crit. Rev. Solid State Mat. Sci. 7:233 (1978).

    Google Scholar 

  24. G.-C. Wang and T.-M. Lu,Phys. Rev. Lett. 50:2014 (1983).

    Google Scholar 

  25. J. D. Gunton, M. San Miguel, and P. S. Sahni, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1983).

    Google Scholar 

  26. For a review, see J. S. Langer,Rev. Mod. Phys. 52:1 (1980).

    Google Scholar 

  27. R. Bausch, V. Dohm, H. K. Janssen, and R. K. P. Zia,Phys. Rev. Lett. 47:1837 (1981); see also K. Kawasaki and T. Ohta,Prog. Theor. Phys. 67:147 (1982);68:129 (1982).

    Google Scholar 

  28. M. E. Fisher,Rev. Mod. Phys. 46:587 (1974).

    Google Scholar 

  29. M. Schick,Prog. Surf. Sci. 11:245 (1981).

    Google Scholar 

  30. F. Y. Wu,Rev. Mod. Phys. 54:235 (1982).

    Google Scholar 

  31. S. Krinsky and D. Mukamel,Phys. Rev. B 16:2313 (1977).

    Google Scholar 

  32. P. C. Hohenberg and B. I. Halperin,Rev. Mod. Phys. 49:435 (1977).

    Google Scholar 

  33. K. Binder and D. Stauffer,Phys. Rev. Lett. 33:1006 (1974); K. Binder,Phys. Rev. B 15:4425 (1977).

    Google Scholar 

  34. K. Binder, C. Billotet, and P. Mirold,Z. Phys. B30:183 (1978).

    Google Scholar 

  35. J. Marro, J. Lebowitz, and M. H. Kalos,Phys. Rev. Lett. 43:282 (1979);Acta Met. 30:297 (1982); P. Fratzl, J. L. Lebowitz, J. Marro, and M. H. Kalos,Acta Met. 31:1849 (1983).

    Google Scholar 

  36. P. S. Sahni and J. D. Gunton,Phys. Rev. Lett. 45:369 (1980); P. S. Sahni, J. D. Gunton, S. L. Katz, and R. H. Timpe,Phys. Rev. B 25:389 (1982); P. S. Sahni, S. L. Katz, and J. D. Gunton, preprint.

    Google Scholar 

  37. C. M. Knobler and N. C. Wong,J. Chem. Phys. 85:1972 (1981); Y. C. Chu and W. I. Goldburg,Phys. Rev. A 23:858 (1981).

    Google Scholar 

  38. A. Craievich and J. M. Sanchez,Phys. Rev. Lett. 47:1308 (1981); M. Hermion, D. Ronzard, and P. Guyot,Acta Met. 30:599 (1982); S. Komura, preprints.

    Google Scholar 

  39. I. M. Lifshitz and V. V. Slyozov,J. Phys. Chem. Solids 19:35 (1961).

    Google Scholar 

  40. J. S. Langer,Ann. Phys. (N.Y.) 65:53 (1971).

    Google Scholar 

  41. K. Tokuyama and K. Kawasaki, preprint.

  42. K. Binder,Solid State Commun. 34:191 (1980).

    Google Scholar 

  43. G. F. Mazenko and O. T. Valls,Phys. Rev. Lett. 51:2044 (1983).

    Google Scholar 

  44. P. A. Rikvold and J. D. Gunton,Phys. Rev. Lett. 49:286 (1982).

    Google Scholar 

  45. P. Fratzlet al., Ref. 35, and Ref. 41.

  46. K. Binder,Phys. Rev. Lett. 45:811 (1980);Z. Phys. B45:61 (1981); K. Binder, M. H. Kalos, J. L. Lebowitz, and M. K. Phani,Acta Met. 29:1655 (1981).

    Google Scholar 

  47. S. A. Safran, private communication.

  48. H. Furukawa, preprint.

  49. K. Binder and D. P. Landau,Phys. Rev. B 21:1941 (1980).

    Google Scholar 

  50. K. Kaski, W. Kinzel, and J. D. Gunton,Phys. Rev. B 27:6777 (1983).

    Google Scholar 

  51. P. A. Slotte, preprint.

  52. D. P. Landau, A. Sadiq, and K. Binder, in preparation.

  53. R. J. Glauber,J. Math. Phys. 4:294 (1963).

    Google Scholar 

  54. K. Binder, ed.,Monte Carlo Methods in Statistical Physics (Springer, Berlin, 1979);Monte Carlo Methods in Statistical Physics II (Springer, Berlin, 1983).

    Google Scholar 

  55. K. Kawasaki, inPhase Transitions and Critical Phenomena Vol. II, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972).

    Google Scholar 

  56. E. Bauer, inPhase Transitions in Surface Films, J. G. Dash and J. Ruvalds, eds. (Plenum Press, New York, 1979), p. 267.

    Google Scholar 

  57. E. Bauer, private communication.

  58. A. Sadiq and K. Binder,Surf. Sci. 128:350 (1983).

    Google Scholar 

  59. A. Sadiq and K. Binder,Phys. Rev. Lett. 51:674 (1983).

    Google Scholar 

  60. A. Sadiq, submitted toJ. Comp. Phys.

  61. A. B. Bortz, M. H. Kalos, and J. L. Lebowitz,J. Comp. Phys. 17:10 (1981).

    Google Scholar 

  62. D. Stauffer,Phys. Rep. 54:1 (1979).

    Google Scholar 

  63. L. van Hove,Phys. Rev. 93:1374 (1954).

    Google Scholar 

  64. C. Billotet and K. Binder,Physica 103A:99 (1980).

    Google Scholar 

  65. M. E. Fisher and Z. Racz,Phys. Rev. B 13:5039 (1976).

    Google Scholar 

  66. R. Kretschmer, K. Binder, and D. Stauffer,J. Stat. Phys. 15:267 (1976).

    Google Scholar 

  67. R. H. Swendsen and S. Krinsky,Phys. Rev. Lett. 43:177 (1979).

    Google Scholar 

  68. K. Binder,J. Stat. Phys. 24:69 (1981).

    Google Scholar 

  69. J. Tobochnik and A. Jayaprakash,Phys. Rev. B 25:4891 (1982).

    Google Scholar 

  70. R. B. Peason, J. L. Richardson, and D. Toussaint,J. Comp. Phys. 51:241 (1983); A. Hooghland, J. Spaa, B. Selman, and A. Compagner,J. Comp. Phys. 51:250 (1983).

    Google Scholar 

  71. R. Imbihl, R. J. Behm, K. Christmann, G. Ertl, and T. Matsushima,Surf. Sci. 117:57 (1982); W. Selke, W. Kinzel, and K. Binder,Surf. Sci. 125:74 (1983).

    Google Scholar 

  72. W. Selke and W. Pesch,Z. Physik B47:335 (1982); W. Selke and D. A. Huse,Z. Phys. B50:113 (1983); W. Selke and J. Yeomans,J. Phys. A16:2789 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadiq, A., Binder, K. Dynamics of the formation of two-dimensional ordered structures. J Stat Phys 35, 517–585 (1984). https://doi.org/10.1007/BF01010824

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010824

Key words

Navigation