Skip to main content
Log in

Nonintersecting string model and graphical approach: Equivalence with a Potts model

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Using a graphical method we establish the exact equivalence of the partition function of aq-state nonintersecting string (NIS) model on an arbitrary planar, even-valenced, lattice with that of a q2-state Potts model on a related lattice. The NIS model considered in this paper is one in which the vertex weights are expressible as sums of those of basic vertex types, and the resulting Potts model generally has multispin interactions. For the square and Kagomé lattices this leads to the equivalence of a staggered NIS model with Potts models with anisotropic pair interactions, indicating that these NIS models have a first-order transition forq > 2. For the triangular lattice the NIS model turns out to be the five-vertex model of Wu and Lin and it relates to a Potts model with two- and three-site interactions. The most general model we discuss is an oriented NIS model which contains the six-vertex model and the NIS models of Stroganov and Schultz as special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic, London, 1982).

    Google Scholar 

  2. E. H. Lieb,Phys. Rev. Lett. 18:692, 1046 (1967);Phys. Rev. Lett. 19:108 (1967); B. Sutherland,Phys. Rev. Lett. 19:103 (1967); C. P. Yang,Phys. Rev. Lett. 19:586 (1967); B. Sutherland, C. N. Yang, and C. P. Yang,Phys. Rev. Lett. 19:588 (1967).

    Google Scholar 

  3. S. B. Kelland,Aust. J. Phys. 27:813 (1974).

    Google Scholar 

  4. R. J. Baxter,Ann. Phys. (N.Y.) 70:193 (1972).

    Google Scholar 

  5. R. J. Baxter,J. Phys. C 6:L445 (1973).

    Google Scholar 

  6. R. J. Baxter, H. N. V. Temperley, and S. E. Ashley,Proc. R. Soc. London Ser. A 358:535 (1978).

    Google Scholar 

  7. J. H. H. Perk and C. L. Schultz, inNon-Linear Integrable Systems—Classical Theory and Quantum Theory, Proc. RIMS Symposium, M. Jimbo and T. Miwa, eds. (World Scientific, Singapore, 1983).

    Google Scholar 

  8. Yu. G. Stroganov,Phys. Lett. 74A:116 (1979).

    Google Scholar 

  9. C. L. Schultz,Phys. Rev. Lett. 46:629 (1981).

    Google Scholar 

  10. J. H. H. Perk and C. L. Schultz,Phys. Lett. 84A:407 (1981).

    Google Scholar 

  11. J. H. H. Perk and C. L. Schultz,Physica 122A:50, (1983).

    Google Scholar 

  12. C. L. Schultz, Ph. D. dissertation (State University of New York, Stony Brook, 1982).

    Google Scholar 

  13. R. J. Baxter,J. Stat. Phys. 28:1 (1982).

    Google Scholar 

  14. J. H. H. Perk and F. Y. Wu,Physica A (in press).

  15. E. H. Lieb and F. Y. Wu, inCritical Phenomena and Phase Transitions, Vol. I, C. Domb and M. S. Green, eds. (Academic, London, 1972), p. 331.

    Google Scholar 

  16. F. Y. Wu,Phys. Rev. B4:2312 (1971).

    Google Scholar 

  17. L. P. Kadanoff and F. J. Wegner,Phys. Rev. B4:3989 (1971).

    Google Scholar 

  18. R. J. Baxter, S. B. Kelland, and F. Y. Wu,J. Phys. A9:397 (1976).

    Google Scholar 

  19. F. Y. Wu,Rev. Mod. Phys. 54:235 (1982).

    Google Scholar 

  20. F. Y. Wu and K. Y. Lin,J. Phys. A13:629 (1980).

    Google Scholar 

  21. H. N. V. Temperley and E. H. Lieb,Proc. R. Soc. London Ser. A 322:251 (1971).

    Google Scholar 

  22. F. Y. Wu,J. Appl. Phys. 55:2421 (1984).

    Google Scholar 

  23. A. Hintermann, H. Kunz, and F. Y. Wu,J. Stat. Phys. 19:623 (1978).

    Google Scholar 

  24. F. Y. Wu and R. K. P. Zia,J. Phys. A14:721 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perk, J.H.H., Wu, F.Y. Nonintersecting string model and graphical approach: Equivalence with a Potts model. J Stat Phys 42, 727–742 (1986). https://doi.org/10.1007/BF01010443

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010443

Key words

Navigation