Skip to main content
Log in

Two-body correlations and pair formation in the two-dimensional Coulomb gas

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate pair correlations in the two-dimensional Coulomb gas made up of two species of point ions carrying electric charges Z1 e(>0) and Z2 e(<0), and interaction by the logarithmic Coulomb potential. This system is known to be classically stable for couplingsΓ=e 2/k BT<Tc=2/¦Z1Z2¦ (whereT is the temperature). Correlations between equally charged ions are shown to be greatly modified at short distances, in the rangeΓ c/2<Γ<Γ c, due to gradual ion “condensation.” The usual integral equations for the pair correlation functions admit no solutions in that range. Preliminary Monte Carlo simulations for the symmetric case (Z1=−Z2) reveal a striking “chemical” equilibrium between tightly bound ion pairs and free ions, which is reasonably well described by a simple Bjerrum model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Jancovici,Phys. Rev. Lett. 46:386 (1981).

    Google Scholar 

  2. J. M. Kosterlitz and D. J. Thouless,J. Phys. C 6:1181 (1973).

    Google Scholar 

  3. J. Fröhlich and T. Spencer,Phys. Rev. Lett. 46:1006 (1981).

    Google Scholar 

  4. S. T. Chui and J. D. Weeks,Phys. Rev. B 14:4978 (1976).

    Google Scholar 

  5. E. H. Lieb,Rev. Mod. Phys. 48:553 (1976).

    Google Scholar 

  6. E. H. Hauge and P. C. Hemmer,Phys. Norv. 5:209 (1971); see also D. Nicolaides,Phys. Lett. 103A:64 (1984).

    Google Scholar 

  7. J. Fröhlich,Commun. Math. Phys. 47:233 (1976).

    Google Scholar 

  8. C. Deutsch and M. Lavaud,Phys. Rev. A 9:2598 (1974).

    Google Scholar 

  9. J. P. Hansen and I. R. McDonald,Phys. Rev. A 23:2041 (1981); B. Bernu, J. P. Hansen, and R. Mazighi,Phys. Lett. 100A:28 (1984).

    Google Scholar 

  10. See, e.g., H. Minoo, M. M. Gombert, and C. Deutsch,Phys. Rev. A 23:924 (1981).

    Google Scholar 

  11. J. P. Hansen and P. Viot,Phys. Lett. 95A:155 (1983).

    Google Scholar 

  12. A. Salzberg and S. Prager,J. Chem. Phys. 38:2587 (1963); R. M. May,Phys. Lett. 25A:282 (1967).

    Google Scholar 

  13. F. H. Stillinger and R. Lovett,J. Chem. Phys. 49:1991 (1968).

    Google Scholar 

  14. D. J. Mitchell, D. A. Mc Quarrie, A. Szabo, and J. Groneveld,J. Stat. Phys. 17:15 (1977).

    Google Scholar 

  15. Ph. A. Martin and Ch. Gruber,J. Stat. Phys. 31:691 (1983).

    Google Scholar 

  16. L. Blum, C. Gruber, J. L. Lebowitz, and P. Martin,Phys. Rev. Lett. 48:1769 (1982).

    Google Scholar 

  17. See, e.g., M. Parrinello and M. P. Tosi,Riv. Nuovo Cimento 2(6):1 (1979).

    Google Scholar 

  18. G. S. Manning,J. Chem. Phys. 51:925 (1969).

    Google Scholar 

  19. B. Widom,J. Chem. Phys. 39:2808 (1963).

    Google Scholar 

  20. B. Jancovici,J. Stat. Phys. 17:357 (1977).

    Google Scholar 

  21. W. G. Hoover and J. C. Poirier,J. Chem. Phys. 37:1041 (1962).

    Google Scholar 

  22. K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjölander,Phys. Rev. 176:589 (1968).

    Google Scholar 

  23. R. Calinon, K. I. Golden, G. Kalman, and D. Merlini,Phys. Rev. A 20:329, 336 (1979).

    Google Scholar 

  24. M. Baus and J. P. Hansen,Phys. Rep. 59:1 (1980).

    Google Scholar 

  25. D. Henderson and L. Blum,J. Chem. Phys. 70:3149 (1979).

    Google Scholar 

  26. J. M. Caillol, D. Levesque, and J. J. Weiss,Mol. Phys. 44:733 (1981).

    Google Scholar 

  27. J. P. Hansen and D. Levesque,J. Phys. C 14:L603 (1981).

    Google Scholar 

  28. S. G. Brush, H. L. Sahlin, and E. Teller,J. Chem. Phys. 45:2102 (1966).

    Google Scholar 

  29. J. P. Valleau and S. G. Whittington, inStatistical Mechanics, part A, B. J. Berne, ed. (Plenum, New York, 1977).

    Google Scholar 

  30. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. N. Teller, and E. Teller,J. Chem. Phys. 21:1087 (1953).

    Google Scholar 

  31. F. H. Stillinger and R. Lovett,J. Chem. Phys. 48:3858 (1968).

    Google Scholar 

  32. D. Cperley, G. V. Chester, and M. H. Kalos,Phys. Rev. B 16:3081 (1977).

    Google Scholar 

  33. C. Pangali, M. Rao, and B. J. Berne,Chem. Phys. Lett. 55:413 (1978).

    Google Scholar 

  34. M. Gillan, AERE Harwell report No. TP. 913 (1981).

  35. B. Hafskjold and G. Stell, inStatistical Mechanics, E. Montroll and J. L. Lebowitz, eds. (North-Holland, Amsterdam, 1982).

    Google Scholar 

  36. N. Bjerrum,K. Dan. Vidensk. Selsk. 7:9 (1926).

    Google Scholar 

  37. J. S. Høye and K. Olaussen,Physica 104A:447 (1980); and107A:241 (1981).

    Google Scholar 

  38. P. Viot, Thèse de 3e Cycle, Université P. et M. Curie, Paris (1984).

    Google Scholar 

  39. J. L. Lebowitz and D. Mac Gowan, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, J.P., Viot, P. Two-body correlations and pair formation in the two-dimensional Coulomb gas. J Stat Phys 38, 823–850 (1985). https://doi.org/10.1007/BF01010417

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010417

Key words

Navigation