Skip to main content
Log in

The FKG inequality for the Yukawa2 quantum field theory

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We establish the FKG correlation inequality for the Euclidean scalar Yukawa2 quantum field model and, when the Fermi mass is zero, for pseudoscalar Yukawa2. To do so we approximate the quantum field model by a lattice spin system and show that the FKG inequality for this system follows from a positivity condition on the fundamental solution of the Euclidean Dirac equation with external field. We prove this positivity condition by applying the Vekua-Bers theory of generalized analytic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ruelle,Statistical Mechanics (Benjamin, New York, 1969).

    Google Scholar 

  2. J. Glimm, A. Jaffe, and T. Spencer, The Particle Structure of the Weakly CoupledP(φ)2 Model and Other Applications of High Temperature Expansions, inConstructive Quantum Field Theory, G. Velo and A. Wightman, eds. (Springer-Verlag, Berlin, and New York, 1973), pp. 199–242.

    Google Scholar 

  3. T. Spencer,Comm. Math. Phys. 39:63 (1974).

    Google Scholar 

  4. R. B. Griffiths,J. Math. Phys. 10:1559 (1969).

    Google Scholar 

  5. F. Guerra, L. Rosen, and B. Simon,Ann. Math. 101(1):111 (1975).

    Google Scholar 

  6. E. Nelson, Probability Theory and Euclidean Field Theory, inConstructive Quantum Field Theory, G. Velo and A. Wightman, eds. (Springer-Verlag, Berlin and New York, 1973), pp. 94–124.

    Google Scholar 

  7. J. Fröhlich and B. Simon,Ann. Math. 105:493 (1977).

    Google Scholar 

  8. C. Fortuin, P. Kasteleyn, and J. Ginibre,Comm. Math. Phys. 22:89 (1971).

    Google Scholar 

  9. G. Battle and L. Rosen, On the Infinite Volume Limit of the Strongly Coupled Yukawa2 Model, in preparation.

  10. A. Cooper and L. Rosen,Trans. AMS 234(1):1 (1977).

    Google Scholar 

  11. J. Magnen and R. Sénéor,Comm. Math. Phys. 51:297(1976).

    Google Scholar 

  12. L. Rosen,J. Math. Phys. 18:894 (1977).

    Google Scholar 

  13. A. MacDermot, A Lattice Approximation to the Yukawa2 Euclidean Quantum Field Theory and a Correlation Inequality, Ph.D. Thesis, Cornell University (1976).

  14. H. Nicolai,Comm. Math. Phys. 59:71 (1978).

    Google Scholar 

  15. L. Rosen, Correlation Inequalities for the Yukawa2 Quantum Field Theory, inProceedings of the Colloquium on Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory (Esztergom, Hungary, 1979).

    Google Scholar 

  16. E. Seiler,Comm. Math. Phys. 42:163 (1975).

    Google Scholar 

  17. J. Fröhlich and Y. M. Park, in preparation.

  18. K. Sax, Princeton University Senior Thesis (1975).

  19. J. Avron, I. Herbst, and B. Simon, in preparation.

  20. C. Preston,Comm. Math. Phys. 36:233 (1974).

    Google Scholar 

  21. P. Cartier,Séminaire Bourbaki 25:431 (1973).

    Google Scholar 

  22. B. Simon,The P(φ) 2 Euclidean (Quantum) Field Theory (Princeton Univ. Press, Princeton, N.J., 1974).

    Google Scholar 

  23. J. Glimm and A. Jaffe,Probability Applied to Physics (University of Arkansas Lecture Notes in Mathematics 2, Fayetteville, 1978).

    Google Scholar 

  24. N. Dunford and J. T. Schwartz,Linear Operators, Part II (Interscience, New York, 1963).

    Google Scholar 

  25. I. Vekua,Generalized Analytic Functions (Pergamon Press, New York, 1962).

    Google Scholar 

  26. L. Bers,Pseudo-Analytic Functions (New York University Institute for Mathematics and Mechanics, New York, 1953).

    Google Scholar 

  27. O. McBryan,Comm. Math. Phys. 44:237 (1975).

    Google Scholar 

  28. E. Seiler and B. Simon,J. Math. Phys. 16:2289 (1975).

    Google Scholar 

  29. O. McBryan,Comm. Math. Phys. 45:279 (1975).

    Google Scholar 

  30. E. Seiler and B. Simon,Comm. Math. Phys. 45:99 (1975).

    Google Scholar 

  31. J. Glimm and A. Jaffe,Comm. Math. Phys. 13:253 (1972).

    Google Scholar 

  32. F. Guerra, L. Rosen, and B. Simon,Ann. Inst. Henri Poincaré 25:231 (1976).

    Google Scholar 

  33. E. Seiler and B. Simon,Ann. Phys. (NY) 97:470 (1976).

    Google Scholar 

  34. M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables (U.S. Govt. Printing Office, Washington, D.C., 1964).

    Google Scholar 

  35. T. Kato,Perturbation Theory for Linear Operators (Springer-Verlag, Berlin, 1966).

    Google Scholar 

  36. J. Kemperman,Indag. Math. 39:313 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partially supported by the National Research Council of Canada.

Alfred P. Sloan Foundation Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battle, G.A., Rosen, L. The FKG inequality for the Yukawa2 quantum field theory. J Stat Phys 22, 123–192 (1980). https://doi.org/10.1007/BF01008048

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01008048

Key words

Navigation