Skip to main content
Log in

A twin optically-pumped far-infrared CH3OH laser for plasma diagnostics

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

A twin optically-pumped far-infrared CH3OH laser has been constructed for use in plasma diagnostics. The antisymmetric doublet due to the Raman-type resonant two-photon transition is reproducibly observed at 118.8 μm. With the 118.8-μm line, it is obtained from the frequency separation of the anti-symmetric doublet that CH3OH absorption line center is 16±1 MHz higher than the pump 9.7-μm P(36) CO2 laser line center. It is shown that the Raman-type resonant two-photon transition is useful in order to get several-MHz phase modulation for the far-infrared laser interferometer. Some preliminary performances of this twin laser for the modulated interferometer are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Véron, “Submillimeter interferometry of high density plasmas”, DPh-PFC-SCP, EUR-CEA-FC-980 (Fontenay-aux-Roses, France), pp. 1–60, Dec. 1978.

  2. D. Véron, “High sensitivity HCN laser interferometer for plasma electron density measurements”, Opt. Commun., vol. 10, pp. 95–98, Jan. 1974.

    Google Scholar 

  3. S.M. Wolfe, K.J. Button, J. Waldman, and D.R. Cohn, “Modulated submillimeter laser interferometer system for plasma density measurements”, Appl. Opt., vol. 15, pp. 2645–2648, Nov. 1976.

    Google Scholar 

  4. R.W. Peterson, F.C. Jahoda, and D.A. Platts, “Doppler shift of 1 MHz at 119 μm”, Bull. Am. Phys. Soc., vol. 23, p. 773, Sept. 1978.

    Google Scholar 

  5. D. Véron, J. Certain, and J.P. Crenn, “Multichannel HCN interferometer for electron density profile measurements of tokamak plasmas”, J. Opt. Soc. Am., vol. 67, pp. 964–967, Jul. 1977.

    Google Scholar 

  6. T.Y. Chang, “Optical pumping in gases”, in “Nonlinear Infrared Generation”, ed. Y.-R. Shen, Springer-Verlag Berlin Heidelberg New York, pp. 215–274, 1977.

    Google Scholar 

  7. D. Seligson, M. Ducloy, J.R.R. Leite, A. Sanchez, and M.S. Feld, “Quantum mechanical featuers of optically pumped cw FIR lasers”, IEEE J. Quantum Electron., vol. QE-13, pp. 468–472, Jun. 1977.

    Google Scholar 

  8. J. Heppner, and C.O. Weiss, “Anisotropic gain in an optically pumped cw FIR laser”, Opt. Commun., vol. 21, pp. 324–326, Jun. 1977.

    Google Scholar 

  9. J. Heppner, C.O. Weiss, and P. Plainchamp, “Far infrared gain measurements in optically pumped CH3OH”, Opt. Commun., vol. 23, pp. 381–384, Dec. 1977.

    Google Scholar 

  10. J. Fujita, S. Itoh, K. Kadota, K. Kawahata, Y. Kawasumi, T. Kuroda, K. Matsuoka, K. Matsuura, A. Miyahara, K. Miyamoto, N. Noda, K. Ohkubo, K. Sakurai, K. Sato, M. Sato, S. Tanahashi, Y. Terashima, and K. Toi, “Suppression of major distuption by neutral gas injuction and plasma current control in J.I.P.P. T-II torus”, Proc. 7th Int. Conf. on Plasma Physics and Controlled Nuclear Fusion Research, Paper IAEA-CN-37-N-2, Innsbruck, 1978.

  11. P.M. Plainchamp, “Frequency instability measurements of the CH3OH optically pumped laser at 70.5 and 118 μm”, IEEE J. Quantum Electron., vol. QE-15, pp. 860–864, Sept. 1979.

    Google Scholar 

  12. M. Yamanaka, “Optically pumped waveguide lasers”, J. Opt. Soc. Am., vol. 67, pp. 952–958, Jul. 1977.

    Google Scholar 

  13. D.T. Hodges, F.B. Foote, and R.D. Reel, “High-power operation and scaling behavior of cw optically pumped FIR waveguide lasers”, IEEE J. Quantum Electron., vol. QE-13, pp. 491–494, Jun. 1977.

    Google Scholar 

  14. J.P. Crenn, “A study of waveguides for far infrared interferometers measuring electron density of Tokamak plasmas”, IEEE Tran. Microwave Theory Tech., vol. MTT-27, pp. 573–577, Apr. 1979.

    Google Scholar 

  15. Available in forms of pipe and rod from the Nippon Electric Glass Co., Ltd., 2-Chome-7-1, Seiran, Otsu-City 520, Japan.

  16. D.A. Weitz, W.J. Skocpol, and M. Tinkham, “Capacitivemesh output couplers for optically pumped far-infrared lasers”, Opt. Lett., vol. 3, pp. 13–15, Jul. 1978.

    Google Scholar 

  17. M.W. Lund, J.N. Cogan, and J.A. Davis, “Low-cost method for stabilization of a CO2 laser for use in far infrared laser pumping”, Rev. Sci. Instrum., vol. 50, pp. 791–792, Jun. 1979.

    Google Scholar 

  18. T. Koizumi, K. Nagasaka, M. Yamanaka, A. Nishizawa, and J. Fujita, “Far-Infrared heterodyne detection in gallium doped germanium”, Appl. Opt. (to be published).

  19. J.O. Henningsen, “Assignment of laser lines in optically pumped CH3OH”, IEEE J. Quantum Electron., vol. QE-13, pp. 435–441, Jun. 1977.

    Google Scholar 

  20. E.J. Danielewicz, Jr., and P.D. Coleman, “Assignments of the high power optically pumped cw laser lines of CH3OH”, IEEE J. Quantum Electron., vol. QE-13, pp. 485–490, Jun. 1977.

    Google Scholar 

  21. J.R.R. Leite, D. Seligson, J.J. Mickey, M. Ducloy, A. Sanchez, and M.S. Feld, “Quantum mechanical features of optically pumped FIR c.w. lasers”, Conf. Dig., 2nd Int. Conf. Winter School on Submm Waves and Their Appl., Puerto Rico, pp. 83–84, Dec. 1976 (IEEE CAT No. 76 CH 1152-8 MTT).

  22. M. Inguscio, A. Moretti, and F. Strumia, “IR-FIR transferred Lamb-dip spectroscopy in optically pumped molecular lasers”, Opt. Commun., vol. 30, pp. 355–360, Sept. 1979.

    Google Scholar 

  23. J.-M. Lourtioz, R. Adde, D. Bouchon, and J. Poutnau, “Design and performances of a cw CH3OH waveguide laser”, Rev. Phys. Appl., vol. 14, pp. 323–330, Feb. 1979;

    Google Scholar 

  24. J.-M. Lourtioz and R. Adde, “Diagnostic experiments and modeling of the 118 μm CH3OH laser”, J. de Phys., to be published, 1979; and private communication, 1979.

  25. F.R. Petersen D.G. McDonald, J.D. Cupp, and B.L. Danielson, “Accurate rotational constants, frequencies, and wavelengths from12C16O2 lasers stabilized by saturation absorption”, in “Laser Spectroscopy”, eds. R.G. Brewer and A. Mooradian, Plenum Press, New York and London, pp. 555–569, 1977.

    Google Scholar 

  26. J.B. Koffend, S. Goldstein, R. Bacis, R.W. Field, and S. Ezekiel, “Doppler-free stimulated-emission spectroscopy and secondary frequency standards using an optically pumped laser”, Phys. Rev. Lett., vol. 41, pp. 1040–1044, Oct. 1978.

    Google Scholar 

  27. J. Heppner and C.O. Weiss, private communication, 1979.

  28. T.A. Nussmeier, and R.L. Abrams, “Stark cell stabilization of CO2 laser”, Appl. Phys. Lett., vol. 25, pp. 615–617, Nov. 1974.

    Google Scholar 

  29. A. Van Lerberghe, S. Avrillier, and C.J. Borde, “High stability cw waveguide CO2 laser for high resolution saturation spectroscopy”, IEEE J. Quantum Electron., vol. QE-14, pp. 481–486, Jul. 1978.

    Google Scholar 

  30. E.J. Danielewicz, Jr., T.A. Galantowicz, F.B. Foote, R.D. Reel, and D.T. Hodges, “High performance at new FIR wavelengths from optically pumped CH2F2”, Opt. Lett., vol. 4, pp. 280–282, Sept. 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was carried out under the collaborating research program at the Institute of Plasma Physics, Nagoya University, Nagoya 464, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamanaka, M., Takeda, Y., Tanigawa, S. et al. A twin optically-pumped far-infrared CH3OH laser for plasma diagnostics. Int J Infrared Milli Waves 1, 57–76 (1980). https://doi.org/10.1007/BF01007066

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007066

Key words

Navigation