Skip to main content
Log in

Retinoic acid receptor isoform RARγ 1: an antagonist of the transactivation of the RARβ RARE in epithelial cell lines and normal human keratinocytes

  • Research Articles
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The diversity of isoforms of retinoic acid (RA) receptors (RARs) and of DNA sequences of retinoic acid-responsive elements (RAREs) suggests the existence of selectivities in the RAR/RARE recognition or in the subsequent gene modulation. Such selectivities might be particularly important for RAREs involved in positive feedback, eg. the RARβ RARE. In the present work we found that in several epithelial cell lines, reporter constructs containing the RARβ RARE linked to the HSV-tk promoter were transactivated in the presence of RA by endogenous RARs and co-transfected RARα1 and RARβ2 isoforms, but not by RARγ1. On the contrary, this latter isoform behaved towards the RARβ RARE as an inhibitor of the transactivation produced by endogenous RARs and by cotransfected RARα1 and RARβ2. RARγ1 also behaved as an antagonist of the transactivation produced by cotransfected RXRα. The natural RARβ gene promoter or RARβ RARE tk constructs were not activated by the endogenous receptors of normal human keratinocytes (NHK), which are known to contain predominantly RARγ1. It was, however, possible to activate to a certain extent RARβ RARE-reporter constructs in NHK by co-transfecting RARα1, RARβ2 or RXRα. The antagonist behavior of RARγ1 towards the RARβ RARE may explain why in certain cell types such as keratinocytes, RARβ is neither expressed nor induced by RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco's modified Eagle medium

DMSO:

dimethyl sulfoxide

FCS:

fetal calf serum

MEM:

minimal Eagle medium

NHK:

normal human keratinocyte

RA:

retinoic acid

RAR:

retinoic acid receptor

RARE:

retinoic acid responsive element

TRE:

thyroid responsive element

VDRE:

vitamin D response element

RXR:

retinoid X receptor

References

  1. Sherman MI (1986) In: Sherman MI (Ed) Retinoids and cell differentiation, (pp. 161–186) CRC Press, Boca Raton, Fla, USA

    Google Scholar 

  2. Sporn BM & Roberts AB (1983) Cancer Res. 43: 3034–3040

    Google Scholar 

  3. Lotan R (1980) Biochem. Biophys. Acta 605: 33–91

    Google Scholar 

  4. Maden M (1982) Nature 295: 672–675

    Google Scholar 

  5. Tickle C, Alberts B, Wolpert L & Lee J (1982) Nature 296: 564–566

    Google Scholar 

  6. Thaller C & Eichele G (1987) Nature 327: 625–628

    Google Scholar 

  7. Summerbell D (1983) J. Embryol. Exp. Morph. 78: 269–289

    Google Scholar 

  8. Hardy MH (1983) In: Sawyer RH & Fallon JF (Eds) Epithelial-Mesenchymal Interactions in Development (pp. 163–188) Praeger Publishers, New York

    Google Scholar 

  9. Fell HB & Mellanby E (1953) Metaplasia produced in cultures of chick ectoderm by vitamin A. J. Physiol. 19: 470–488

    Google Scholar 

  10. Darmon M (1991) In: Maden M & Tickle C (eds.) Seminars in Developmental Biology (Vol. 2, pp. 219–228) W.B. Saunders, London

    Google Scholar 

  11. Fuchs, E and Green H (1981) Cell 25: 617–625

    Google Scholar 

  12. Shapiro SS (1986) In: Sherman MI (Ed) Retinoids and cell differentiation (pp. 29–60), CRC Press, Boca Raton, Fla, USA

    Google Scholar 

  13. Paulsen DE, Langille RM, Dress V & Solursh M (1988) Differentiation 39: 123–130

    Google Scholar 

  14. Amatruda TT & Koeffer HP (1986) In: Sherman MI (Ed) Retinoids and Cell Differentiation (pp. 79–103), CRC Press, Boca Raton, Fla, USA

    Google Scholar 

  15. Petkovich M, Brand NJ, Krust A & Chambon P (1987) Nature 330: 444–450

    Google Scholar 

  16. Giguere V, Ong ES, Segui P & Evans R (1987) Nature 330: 624–629

    Google Scholar 

  17. Brand N, Petkovich M, Krust A, Chambon P, De Thé H, Marchio A, Tiollais P & Dejean A (1988) Nature 332: 850–853

    Google Scholar 

  18. Darmon M (1990) J. Lipid Mediators 2: 247–256

    Google Scholar 

  19. Benbrook D, Lernhardt E & Pfahl M (1988) Nature 333: 679–672

    Google Scholar 

  20. Zelent A, Krust A, Petkovich M, Kastner P and Chambon P (1989) Nature 339: 714–717

    Google Scholar 

  21. Krust A, Kastner P, Petkovich M, Zelent A and Chambon P (1989) Proc. Natl. Acad. Sci. USA 86: 5310–5314

    Google Scholar 

  22. Giguère V, Shago M, Zirngibl R, Tate P, Rossant F and Varmuza S (1990) Mol. Cell. Biol. 10: 2335–2340

    Google Scholar 

  23. Kastner Ph, Krust A, Mendelsohn C, Garnier JM, Zelent A, Leroy P and Staub A (1990) Proc. Natl. Acad. Sci. USA 87: 2700–2704.

    Google Scholar 

  24. Leroy P, Krust A, Zelent A, Mendelsohn C, Garnier J-M, Kastner P, Dierich A and Chambon P (1991) EMBO J. 10: 59–69.

    Google Scholar 

  25. Zelent A, Mendelsohn C, Kastner P, Krust A, Garnier J-M, Ruffenach F, Leroy P and Chambon P (1991) EMBO J. 10: 71–81.

    Google Scholar 

  26. Mangelsdorf DJ, Ong ES, Dyck JA and Evans RM (1990) Nature 345: 224–229

    Google Scholar 

  27. Yu VC, Delsert C, Andersen B, Holloway JM, Devary OV, Näär AM, Kim SY, Boutin J-M, Glass CK and Rosenfeld MG (1991) Cell 67: 1251–1266

    Google Scholar 

  28. Leid M, Kastner P, Lyons R, Nakshatri H, Saunders M, Zacharewski T, Chen J-Y, Staub A, Garnier J-M, Mader S and Chambon P (1992) Cell 68: 377–395

    Google Scholar 

  29. Kliewer SA, Umesono K, Mangelsdorf DJ and Evans RM (1992) Nature 355: 446–449

    Google Scholar 

  30. Zhang X-k, Hoffmann B, Tran Paul B-V, Graupner, G and Pfahl M (1992) Nature 355: 441–446

    Google Scholar 

  31. Bugge TH, Pohl J, Lonnoy O and Stunnenberg HG (1992) EMBO J 11: 1409–1418.

    Google Scholar 

  32. Levin AA, Sturzenbecker LJ, Kazmer S, Bosakowski T, Huselton C, Allenby G, Speck J, Kratzeisen C, Rosenberger M, Lovey A & Grippo JF (1992) Nature 355: 359–361

    Google Scholar 

  33. Mangelsdorf D, Borgmeyer U, Heyman RA, Zhou JY, Ong ES, Oro AE, Kakizuka A & Evans RM (1992) Genes & Development 6: 329–344

    Google Scholar 

  34. Dollé P, Ruberte E, Kastner P, Petkovich M, Stoner CM, Gudas LJ and Chambon P (1989) Nature 342: 702–705

    Google Scholar 

  35. Ruberte E, Dollé P, Krust A, Zelent A, Morriss-Kay G and Chambon P. (1990) Development 108: 213–222.

    Google Scholar 

  36. De The H, Marchio A, Tiollais P and Dejean A (1989) EMBO J. 8: 429–433

    Google Scholar 

  37. De Thé H, del Mar Vivanco-Ruiz M, Tiollais P, Stunnenberg H and Dejean A (1990) Nature 343: 177–180

    Google Scholar 

  38. Näär AM, Boutin JM, Lipkin SM, Yu VC, Holloway JM, Glass CK and Rosenfeld MG (1991) Cell 65: 1267–1279

    Google Scholar 

  39. Umesono K, Murakami KK, Thompson CC and Evans RM (1991) Cell 65: 1255–1266

    Google Scholar 

  40. Vasios GW, Gold JD, Petkovich M, Chambon P and Gudas LJ (1989) Proc Natl Acad Sci USA 86: 9099–9103

    Google Scholar 

  41. Noji S, Yamaai T, Koyama E, Nohno T, Fujimoto W, Arata J and Taniguchi S (1989) FEBS Lett. 259: 86–90

    Google Scholar 

  42. Elder JT, Fisher GJ, Zhang Q-Y, Eisen D, Krust A, Kastner P, Chambon P, and Voorhees JJ (1991) J. Invest. Dermatol. 96: 425–433

    Google Scholar 

  43. Husmann M, Lehmann J, Hoffmann B, Hermann T, Tzukerman M and Pfahl M (1991) Mol. Cell. Biol. 11: 4097–4103

    Google Scholar 

  44. Hoffmann B, Lehmann JM, Zhang X-K, Hermann T, Husmann M, Graupner G and Pfahl M (1990) Mol. Endocrinol 4: 1727–1736

    Google Scholar 

  45. Rupniak HTR, Rowlatt C, Lane EB, Steele JG, Trejdosiewicz B, Laskiewicz B, Povey S & Hill BT (1985) J. Natl. Cancer Inst. 75: 621–635

    Google Scholar 

  46. Simon M & Green H (1985) Enzymatic cross-linking of involucrin and other proteins by keratinocyte particulates in vitro. Cell 40: 677–683

    Google Scholar 

  47. Widom RI, Ladias JAA, Kouidou S and Karathanasis SK (1991) Mol Cell Biol 11: 677–687

    Google Scholar 

  48. Chen C and Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7: 2745–2752

    Google Scholar 

  49. de Wet JR, Wood KV, DeLuca M, Helinski DR and Subramani S (1987) Mol. Cell. Biol. 7: 725–737

    Google Scholar 

  50. Deleseluse C., Cavey MT, Martin B, Bernard BA, Reichert U, Maignan J, Darmon M and Shroot B (1991) Mol. Pharmacol. 40: 556–562

    Google Scholar 

  51. Sucov HM, Murakami KK and Evans RM (1990) Proc. Natl. Acad. Sci. USA 87: 5392–5396

    Google Scholar 

  52. Rottman JN, Widom RL, Nadal-Ginard B, Mahdavi V and Karathanasis SK (1991) Mol. Cell. Biol. 11: 3814–3820

    Google Scholar 

  53. Asselineau D, Bernard BA, Bailly C and Darmon M (1989) Dev. Biol. 133: 322–335

    Google Scholar 

  54. Okazawa H, Okamoto K, Ishino F, Ishino-Kaneko T, Takeda S, Toyoda Y, Muramatsu M and Hamada H (1991) EMBO J. 10: 2997–3005.

    Google Scholar 

  55. Schüle R, Rangarajan P, Yang N, Kliewer S, Ransone LJ, Bolado J, Verma IM and Evans RM (1991) Proc. Natl. Acad. Sci. USA 88: 6092–6096

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miquel, C., Clusel, C., Semat, A. et al. Retinoic acid receptor isoform RARγ 1: an antagonist of the transactivation of the RARβ RARE in epithelial cell lines and normal human keratinocytes. Mol Biol Rep 17, 35–45 (1993). https://doi.org/10.1007/BF01006398

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01006398

Key words

Navigation