Skip to main content
Log in

Osmolarity of osmium tetroxide and glutaraldehyde fixatives

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Synopsis

The evidence available to date for the importance of fixative osmolarity is considered together with some observations on the volume changes of crab axons after fixation by osmium tetroxide and glutaraldehyde. The results obtained are compared with those obtained from crab axons and from amphioxus skin cells which had been processed and examined with the electron microscope after initial fixation in fixatives of different composition. It is concluded that the osmolarity of the fixative vehicle is of considerable importance when the fixing agent is glutaraldehyde but is of less importance when the fixing agent is osmium tetroxide or a mixture of the two agents.

Preliminary observations upon crab axons fixed with glutaraldehyde in a vehicle approximating to the internal composition of the cells suggest that this approach to the design of fixative vehicles may be useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, B. C., Hill, A. V. &Howarth, J. V., (1958). The positive and negative heat production associated with a nerve impulse.Proc. Roy. Soc. Lond. B 148, 149–87.

    Google Scholar 

  • Bahr, G. F., Bloom, G. &Friberg, U. (1957). Volume changes of tissue in physiological fluids during fixation in osmium tetroxide or formaldehyde and during subsequent treatment.Exp. Cell Res. 12, 342–55.

    Google Scholar 

  • Baker, J. R. (1933).Cytological technique. London: Methuen.

    Google Scholar 

  • Baker, J. R. (1958).Principles of biological microtechnique. London: Methuen.

    Google Scholar 

  • Baker, J. R. (1965). The fine structure produced in cells by fixatives.J. Roy. micr. Soc. 84, 115–31.

    Google Scholar 

  • Birks, R. I. &Davey, P. F. (1972). An analysis of volume changes in the T-tubes of frog skeletal muscle exposed to sucrose.J. Physiol., Lond. 222, 95–111.

    Google Scholar 

  • Brinley, F. J. (1965). Sodium, potassium and chloride concentrations and fluxes in the isolated giant axon ofHomarus.J. Neurophysiol. 28, 742–72.

    Google Scholar 

  • Bohman, S-O. &Maunsbach, A. B. (1970). Effects on tissue fine structure of variations in colloid osmotic pressure of glutaraldehyde fixative.J. Ultrastruct. Res. 30, 195–208.

    Google Scholar 

  • Bone, Q. &Denton, E. J. (1971). The osmotic effects of electron microscope fixatives.J. Cell Biol. 49, 571–81.

    Google Scholar 

  • Busson-Mabillot, S. (1971). Influence de la fixation chimique sur les ultrastructures. I. Etude sur les organites du follicule ovarien d'un poisson téléostéen.J. Microsc. 12, 317–48.

    Google Scholar 

  • Carstensen, E. L., Aldridge, W. G., Child, S. Z., Sullivan, P. &Brown, H. H. (1971), Stability of cells fixed with glutaraldehyde and acrolein.J. Cell Biol. 50, 529–32.

    Google Scholar 

  • Crawford, G. N. C. &Barer, R. (1951). The action of formaldehyde on living cells as studied by phase-contrast microscopy.Quart. J. micr. Sci. 92, 403–52.

    Google Scholar 

  • Chuang, S. H. (1968). Seawater and osmium tetroxide fixation of marine animals. In:Cell structure and its interpretation, (eds. S. M. McGee Russell & K. F. A. Ross). St Martin's Press: New York.

    Google Scholar 

  • Del Cerro, M. P. &Snider, R. S. (1972). Studies on the developing cerebellum. II. The ultrastructure of the external granular layer.J. comp. Neurol. 144, 131–64.

    Google Scholar 

  • Doggenweiler, C. F. &Heuser, J. E. (1967). Ultrastructure of the prawn nerve sheaths. Role of fixative and osmotic pressure in vesiculation of thin cytoplasmic laminae.J. Cell Biol. 34, 407–20.

    Google Scholar 

  • Elbers, P. F. (1966). Ion permeability of the eggs ofLimnaea stagnalis L. on fixation for electron microscopy.Biochim. biophys. Acta 112, 318–19.

    Google Scholar 

  • Elford, B. C. &Walter, C. A. (1972). Preservation of structure and function of smooth muscle. cooled to −79°C in unfrozen aqueous media.Nature, Lond. 236, 58–9.

    Google Scholar 

  • Hertwig, G. (1931). Der Einfluss der Fixierung auf das Kern- und Zell-volumen.Z. Mikr. anat. Forsch 23, 484–504.

    Google Scholar 

  • Hill, D. K. (1950). The volume change resulting from stimulation of a giant nerve fibre.J. Physiol., Lond. 111, 304–27.

    Google Scholar 

  • Hopwood, D., (1970). The reactions between formaldehyde, glutaraldehyde and osmium tetroxide, and their fixation effects on bovine serum albumin and on tissue blocks.Histochemie 24, 50–64.

    Google Scholar 

  • Karnovsky, M. J. (1965). A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy.J. Cell Biol. 27, 137A.

    Google Scholar 

  • Lucke, B. (1940). The living cell as an osmotic system and its permeability to water. In:Cold Spring Harbor Symp. Quant. Biol. 8, 123–32.

  • Malhotra, S. K. (1962). Experiments on fixation for electron microscopy. I. Unbuffered osmium tetroxide.Quart. J. micr. Sci. 103, 5–15.

    Google Scholar 

  • Maunsbach, A. B. (1966). The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells. II. Effect of varying osmolality, ionic strength, buffer system and fixative concentration of glutaraldehyde solution.J. Ultrastruct. Res.,15, 283–309.

    Google Scholar 

  • Millonig, G. (1968). In Millonig, G. and Marinozzi, V. Fixation and embedding in electron microscopy. In:Advances in optical and electron microscopy (eds. V. E. Coslett & R. Barer). Vol. 2, p. 251. Academic Press: New York.

    Google Scholar 

  • Olsson, R. (1961). The skin of amphioxus.Z. Zellforsch. 64, 90–104.

    Google Scholar 

  • Ovalle, W. K. (1970). Fine structure of rat intrafusal muscle fibres. The polar region.J. Cell Biol. 51, 83.

    Google Scholar 

  • Perrachia, C. (1970). A system of parallel septa in crayfish nerve fibers.J. Cell Biol. 44, 125–33.

    Google Scholar 

  • Ponder, E. (1940). The red cell as an osmometer. In:Cold Spring Harbor Symp. Quant. Biol. 8, 133–43.

  • Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron opaque stain in electron microscopy.J. Cell Biol. 17, 208–12.

    Google Scholar 

  • Robertson, E. A. &Schultz, R. L. (1970). The impurities in commercial glutaraldehyde and their effect on the fixation of brain.J. Ultrastruct. Res. 30, 275–87.

    Google Scholar 

  • Sjöstrand, F. S. (1956). Electron microscopy of cells and tissues. In:Physical Techniques in Biological Research (eds. G. Oster & A. W. Pollister). Vol. 3, pp. 241–97. Academic Press: New York.

    Google Scholar 

  • Tilney, L. G. &Goddard, J. (1970). Nucleating sites for the assembly of cytoplasmic microtubules in the ectodermal cells of blastulae ofArbacia punctulata.J. Cell Biol. 46, 564–75.

    Google Scholar 

  • Young, J. Z. (1935). Osmotic pressure of fixing solutions.Nature, Lond. 135, 823–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bone, Q., Ryan, K.P. Osmolarity of osmium tetroxide and glutaraldehyde fixatives. Histochem J 4, 331–347 (1972). https://doi.org/10.1007/BF01005008

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01005008

Keywords

Navigation