Skip to main content
Log in

Thermodynamics of aqueous phosphate solutions: Apparent molar heat capacities and volumes of the sodium and tetramethylammonium salts at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A Picker flow microcalorimeter and a flow densimeter were used to obtain apparent molar heat capacities and apparent molar volumes of aqueous solutions of Na3PO4 and mixtures of Na2HPO4 and NaH2PO4. Identical measurements were also made on solutions of tetramethylammonium salts to evaluate the importance of anion-cation interaction. The experimental apparent molar properties were analyzed in terms of a simple extended Debye-Hückel model and the Pitzer ion-interaction model, both with a suitable treatment for the effect of chemical relaxation on heat capacities, to derive the partial molar properties of H2PO 4 (aq), HPO 2−4 (aq) and PO 3−4 (aq) at infinite dilution. The volume and heat capacity changes for the second and third ionization of H3PO4(aq) have been determined from the experimental data. The importance of ionic complexation with sodium is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. G. Hepler and H. P. Hopkins,Rev. Inorg. Chem. 1, 303 (1979).

    Google Scholar 

  2. R. E. Messmer and C. F. Baes,J. Solution Chem. 3, 307 (1974).

    Google Scholar 

  3. P. Daniele, A. De Robertis, C. De Stefano, A. Gianguzza, and S. Sammartano,J. Solution Chem. 20, 495 (1991).

    Google Scholar 

  4. J. Hershey, M. Fernandez, and F. Millero,J. Solution Chem. 18, 875 (1989).

    Google Scholar 

  5. J. Larson, K. Zeeb, and L. Hepler,Can. J. Chem. 60, 2141 (1982).

    Google Scholar 

  6. G. Scatchard and R. Breckenridge,J. Phys. Chem. 58, 596 (1954).

    Google Scholar 

  7. R. Smith and R. Alberty,J. Phys. Chem. 60, 180 (1956).

    Google Scholar 

  8. M. Selvaratnam and M. Spiro,Trans. Faraday Soc. 61, 360 (1965).

    Google Scholar 

  9. C. Preston and W. Adams,J. Phys. Chem. 83, 814 (1979).

    Google Scholar 

  10. W. L. Marshall and G. M. Begun,J. Chem. Soc. Faraday Trans. 2,85, 1963 (1989).

    Google Scholar 

  11. P. Picker, P. Leduc, P. Philip, and J. Desnoyers,J. Chem Thermodynamics 3, 631 (1971).

    Google Scholar 

  12. P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  13. J. Hovey, L. Hepler, and P. Tremaine,Thermochimica Acta 126, 245 (1988).

    Google Scholar 

  14. J. A. Barbero, L. G. Hepler, K. G. McCurdy, and P. R. Tremaine,Can. J. Chem. 61, 2509 (1983).

    Google Scholar 

  15. J. Desnoyers, C. Visser, G. Perron, and P. Picker,J. Solution Chem. 5, 605 (1976).

    Google Scholar 

  16. G. Kell, inWater, a Comprehensive Treatise, Chap. 10, F. Franks, ed., (Plenum Press, New York 1972).

    Google Scholar 

  17. F. Vaslow,J. Phys. Chem. 70, 2286 (1966).

    Google Scholar 

  18. D. J. Bradley and K. S. Pitzer,J. Phys. Chem. 83, 1599 (1979).

    Google Scholar 

  19. N. Bjerrum and A. Unmack,Kgl. Danske Videnskab. Selskab, Math.-Fys. Medd,9, 129 (1929).

    Google Scholar 

  20. P.Pappoff, G. Torsi, and G. Zambonin,Gazz. Chim. Ital. 95, 1031 (1965).

    Google Scholar 

  21. J. Hovey, L. Hepler, and P. Tremaine,Can. J. Chem. 66, 881 (1988).

    Google Scholar 

  22. B. Wendrow and K. A. Kobe,Ind. Eng. Chem. 44, 1439 (1955).

    Google Scholar 

  23. R. Bates, G. Pinching, and E. Smith,J. Res. Natl. Bur. Std. 45, 418 (1950).

    Google Scholar 

  24. A. Lo Surdo, K. Bernstrom, C. Jonsson, and F. J. Millero,J. Phys. Chem. 83, 1255 (1979).

    Google Scholar 

  25. R. G. Bates and S. F. Acree,J. Res. Natl. Bur. Std. 30, 129 (1943).

    Google Scholar 

  26. A. Grzybowski,J. Phys. Chem. 62, 550 (1958).

    Google Scholar 

  27. A. Grzybowski,J. Phys. Chem. 62, 555 (1958).

    Google Scholar 

  28. R. E. Mesmer, W. L. Marshall, D. A. Palmer, J. M. Simonson, and H. F. Holmes,J. Solution Chem. 17, 307 (1988).

    Google Scholar 

  29. K. Pitzer and G. Mayorga,J. Phys. Chem. 77, 2300 (1973).

    Google Scholar 

  30. E. Atlas, C. Culberson, and R. M. Pitkowicz,Marine Chemistry 4, 243 (1976).

    Google Scholar 

  31. C. Mason and J. Culvem,J. Am. Chem. Soc. 71, 2387 (1949).

    Google Scholar 

  32. W. H. Lee and R. J. Wheaton,J. Chem. Soc. Faraday Trans 2 74, 1456 (1978).

    Google Scholar 

  33. H. Bianchi, H. R. Corti, and R. Ferniacandez Prini,J. Solution Chem. 21, 1107 (1992).

    Google Scholar 

  34. A. Roux, G. Perron, and J. Desnoyers,Can. J. Chem. 62, 878 (1984).

    Google Scholar 

  35. A. J. Read,J. Solution Chem. 17, 213 (1988).

    Google Scholar 

  36. L. F. Nims,J. Am. Chem. Soc. 55, 1946 (1933).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchi, H., Tremaine, P.R. Thermodynamics of aqueous phosphate solutions: Apparent molar heat capacities and volumes of the sodium and tetramethylammonium salts at 25°C. J Solution Chem 24, 439–463 (1995). https://doi.org/10.1007/BF01004477

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01004477

Key Words

Navigation