Skip to main content
Log in

Glycogen, its chemistry and morphological appearance in the electron microscope. II. The complex formed in the selective contrast staining of glycogen

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Synopsis

Selective contrast staining of glycogen in untreated ultrathin sections of aldehyde-fixed tissues, double-fixed with 1% osmium tetroxide containing 0.05m K3Fe(CN)6 as reported previously (De Bruijn, 1973), may also be obtained by the addition of either K4Fe(CN)6, K3Co(CN)6, K2Ru(CN)6, or K4Os(CN)6. On the other hand, addition of K3Cr(CN)6, K2Ni(CN)4, K3Mn(CN)6, K3Rh(CN)6, K2Pd(CN)4, K2Pt(CN)4, or K3Ir(CN)6 produces no effect. Hexavalent osmium oxide compounds, such as K2OsO4 and OsO3.2 pyridine, react selectively with a native (or acquired) ligand in the aldehyde-fixed glycogen, but do not render it more electron dense than its immediate surroundings. The presence of these osmium oxides is detected and they are rendered more electron dense by an accumulation reaction by the application on ultrathin sections of phosphotungstic acid (PTA) or a mixture of K2OsO4 and K4Fe(CN)6. As selective contrast staining of glycogen is also obtained by double fixation of the aldehyde-fixed tissue with 0.05m K2OsO4 solutions containing 0.05m K4Fe(CN)6 or 0.05m K4Os(CN)6, it is postulated that in such tissue, both the selective reaction of K2OsO4 with the ligand in the aldehyde-fixed glycogen, and the accumulation of heavy metal at the sites occupied by the K2OsO4, occur simultaneously. A proposal for the constitution of this heavy metal osmium/cyanide complex is formulated and arguments are presented that both compounds are formed in the selective contrast stained glycogen areas of such treated tissues. The relative contribution of the components to the final contrast and its complex character is demonstrated by staining ultrathin glutaraldehyde sections intermittently with 0.05m solutions of K2OsO4 and K4Fe(CN)6; it is shown that after at least three intermittent reactions with both K2OsO4 and K4Fe(CN)6, the glycogen areas in such sections became contrast stained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahr, G. F. (1954). Osmium tetroxide and ruthenium tetroxide and their reactions with biologically important substances. Electron stains II.Expl. Cell Res. 7, 457–79.

    Google Scholar 

  • Griegée, R. (1938). Organische Osmiumverbindungen.Angew. Chem. 51, 519–30.

    Google Scholar 

  • Criegée, R., Marchand, B. &Wannonius, H. (1942). Zur Kenntnis der organischen Osmiumverbindungen.Ann. Chem. 550, 99–104.

    Google Scholar 

  • De Bruijn, W. C. (1968). A modified OsO4-(double) fixation procedure which selectively contrasts glycogen.Proceedings of the 4th European Regional Conferencé II, 65-6.

  • de Bruijn, W. C. (1969). De pathogenese van experimenteel verwekte atheromatose bij konijnen. Drukkerij Bronder-Offset N.V. Rotterdam, Thesis, Leiden.

    Google Scholar 

  • de Bruijn, W. C. (1973a). A modified OsO4 fixative which selectively contrasts membranes and glycogen.Acta morph. Acad. Sci. hung. I suppl.14, 43.

    Google Scholar 

  • de Bruijn, W. C. (1973b). Glycogen its chemistry and morphologic appearance in the electron microscope. I.J. Ultrastruct. Res. 42, 29–50.

    Google Scholar 

  • de Bruijn, W. C. &den Breejen, P. (1973a). Selective glycogen contrast by hexavalent osmium oxide compounds. In:Electron Microscopy and Cytochemistry (eds. E. Wisse, W. Th. Daems, I. Molenaar & P. van Duijn), pp. 259–62. Amsterdam: North-Holland.

    Google Scholar 

  • De Bruijn, W. C. & Den Breejen, P. (1973b). Identification of tissue ligands involved in the glycogen contrasting reaction.Abstracts of the Joint Session on Electron Microscopy, Luik, Belgium, 64.

  • Dvorak, A. M., Hammond, M. E., Dvorak, H. F. &Karnovski, M. J. (1972). Loss of cell surface material from peritoneal exudate cells associated with lymphocyte-mediated inhibition of macrophage migration from capillary tubes.Lab. Invest. 27, 561–74.

    Google Scholar 

  • Elbers, P. F. &Ververgaert, P. H. J. Th. (1964). Tricomplex fixation of phospholipids.Proceedings of the European Regional Conference on Electron Microscopy.3, 1–2.

    Google Scholar 

  • Elbers, P. F., Ververgaert, P. H. J. Th. &Demel, R. (1965) Tricomplex fixation of phospho-lipids.J. Cell Biol. 24, 23–30.

    Google Scholar 

  • Glick, D. (1970). Phosphotungstic acid not a stain for polysaccharide.J. Histochem. Cytochem. 18, 455.

    Google Scholar 

  • Highton, P. J., Murr, B. L., Shaf, F. &Beer, M. (1968). Electron microscopic study of base sequence in nucleic acids. VIII. Specific conversion of thymine into anionic osmate esters.Biochemistry 7, 825–33.

    Google Scholar 

  • Hosemann, R. &Nemetschek, Th. (1973). Reaktionsabläufe zwischen Phosphorwolframsäure und Kollagen.Kolloid-Z.u.Z.Polymere 251, 53–60.

    Google Scholar 

  • Jindal, V. K., Agrawal, M. C. &Mushran, S. P. (1971). Mechanism of osmium (VIII) catalyzed oxidation of tellurium (IV) by alkaline ferrocyanide ion.J. Inorg. Nucl. Chem. 33, 2469–75.

    Google Scholar 

  • Karnovsky, M. J. (1971). Use of ferrocyanide-reduced osmium tetroxide in electron microscopy.Abstracts of the 11th Annual Meeting of the American Society of Cell Biology, New Orleans.

  • Krishna, B. &Singh, H. S. (1966). Kinetics of oxidation of methanol and ethanol by hexacyanoferrate (III) in alkaline media using osmium tetra oxide as catalyst.Z. Phys. Chem. 231, 399–406.

    Google Scholar 

  • Litman, R. B. &Barnett, R. J. (1972). The mechanism of the fixation of tissue components by osmium tetroxide via hydrogen bonding.J. Ultrastruct. Res. 38, 63–85.

    Google Scholar 

  • Livingstone, S. E. (1973).Osmium. Comprehensive inorganic Chemistry, Vol. 3 (ed. A. F. Trotman-Dickenson), pp. 1209–33. Oxford: Pergamon Press.

    Google Scholar 

  • Lott, K. A. K. &Symons, M. C. R. (1960). Structure and reactivity of the oxyanions of transition metals. Sexivalent ruthenium and osmium.J. Am. Chem. Soc. 10, 973–6.

    Google Scholar 

  • McGee-Russell, S. M. &De Bruijn, W. C. (1968). Image and artifact — comments and experiments on the meaning of the image in the electron microscope. In:Cell Structure and its Interpretation (eds. S. M. McGee-Russell & K. F. A. Ross). London: Edward Arnold.

    Google Scholar 

  • Pease, D. C. (1970). Phosphotungstic acid as a specific electron stain for complex carbohydrates.J. Histochem. Cytochem. 18, 455–8.

    Google Scholar 

  • Quintarelli, G., Zito, R. &Cifonelli, J. A. (1971a). On phosphotungstic acid staining I.J. Histochem. Cytochem. 19, 641–7.

    Google Scholar 

  • Quintarelli, G., Cifonelli, J. A. &Zito, R. (1971b). On phosphotungstic acid staining II.J. Histochem. Cytochem. 19, 648–53.

    Google Scholar 

  • Rambourg, A. (1973). Staining of intracellular glycoproteins. In:Electron Microscopy and Cytochemistry (eds. E. Wisse, W. Th. Daems, I. Molenaar & P. van Duyn), pp. 245–53. Amsterdam: North-Holland.

    Google Scholar 

  • Saxena, O. G. (1967). New titrimetric microdetermination of osmium.Microchem. J. 12, 609–11.

    Google Scholar 

  • Schade, H. A. R. (1973). On the staining of glycogen for electron microscopy with polyacids of tungsten and molybdenum. I. Direct staining of sections of osmium fixed and epon embedded mouse liver with aqueous solutions of phosphotungstic acid (PTA). In:Electron Microscopy and Cytochemistry (eds. E. Wisse, W. Th. Daems, I. Molenaar & P. van Duijn), pp. 263–6. Amsterdam: North-Holland.

    Google Scholar 

  • Schilt, A. (1966). Formal oxidation-reduction potentials and indicator characteristics of some cyanide- and 2.2′ bipyridine complexes of ironII, rutheniumII and osmiumII.Ann. Analyt. Chem. 35, 1599–1612.

    Google Scholar 

  • Scott, J. E. &Glick, D. (1970). The invalidity of ‘phosphotungstic acid as a specific electron stain for complex carbohydrates’.J. Histochem. Cytochem. 19, 63–4.

    Google Scholar 

  • Scott, J. E. (1973). Phosphotungstic acid ‘Schiff-reactive’ but not a ‘glycol reagent’.J. Histochem. Cytochem. 21, 1084–5.

    Google Scholar 

  • Seligman, A. M., Wasserkrug, H. L. &Hanker, J. S. (1966). A new staining method (OTO) for enhancing contrast of lipid-containing membranes and droplets in osmium tetroxide fixed tissue with osmiophilic thiocarbohydrazide (TCH).J. Cell Biol. 30, 424–32.

    Google Scholar 

  • Singh, V. N., Singh, H. S. &Saxena, B. B. L. (1968). Kinetics and mechanism of the osmium tetroxide catalyzed oxidation of acetone and ethyl methyl ketone by alkaline hexacyanoferrate (III) ion.J. Am. Chem. Soc. 91, 2643–8.

    Google Scholar 

  • Venable, J. H. &Coggeshall, R. (1965). A simplified lead citrate stain for use in electron microscopy.J. Cell Biol. 25, 407–8.

    Google Scholar 

  • Watson, M. L. (1958). Staining of tissue sections for electron microscopy with heavy metals.J. biophys. biochem. Cytol. 4, 475–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Bruijn, W.C., Den Breejen, P. Glycogen, its chemistry and morphological appearance in the electron microscope. II. The complex formed in the selective contrast staining of glycogen. Histochem J 7, 205–229 (1975). https://doi.org/10.1007/BF01003591

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01003591

Keywords

Navigation