Skip to main content
Log in

A critical evaluation of analytical solutions and reynolds analogy equations for turbulent heat and mass transfer in smooth tubes

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

A critical evaluation of recently proposed analytical solutions and Reynolds analogy based correlations for heat transfer with constant properties to turbulent flow of liquids and gases in smooth tubes is presented. A new Reynolds analogy correlation is developed which agrees with the solutions of DeissleR, and Sparrow et al., within ±2 percent. The ability of this equation to correlate constant properties heat transfer data is compared with the equations proposed by FRiend and MetzneR, and Petukhov and Popov. Both the new equation and the Petukhov and Popov equation provide a very good correlation of existing data for.7 <Pr < 50. However, the Petukhov and Popov equation yielded a better correlation of the high Schmidt number mass transfer data of six investigators. Although there is considerable disagreement among these mass transfer data, the Petukhov and Popov equation agrees with the smoothed results of four investigators within ±15 percent. Therefore, this equation is tentatively recommended for use at high Prandtl or Schmidt numbers. The recommended equation is compared to the popular Colburn and Dittus-Boelter empirical equations and is shown to be superior to both equations.

Zusammenfassung

Es wird eine kritische Auswertung analytischer Lösungen und auf der Reynolds-Analogie basierender Beziehungen für den turbulenten Wärmeübergang im glatten Rohr bei konstanten Stoff werten vorgelegt. Eine neu entwikkelte, auf der Reynolds-Analogie basierende Korrelation stimmt mit den Lösungen von Deissler und von Sparrow u. a. innerhalb 2 Prozent überein. Diese Gleichung wird für den Fall konstanter Stoffwerte mit den Gleichungen vonFriend undMetzner und vonPcetukhov undPopov verglichen. Vorhandene Meßwerte werden im Bereich 0,7 <Pr < 50 sowohl von der neuen Gleichung wie von der vonPetukhov und Popov gut wiedergegeben. Bei hohen Schmidt-Zahlen gibt die letztgenannte Gleichung die Meßwerte für den Stoffübergang von sechs Autoren besser wieder. Trotz beträchtlicher Streuungen lassen sich die ausgeglichenen Meßwerte von vier Autoren mit einer Unsicherheit von 15 Prozent durch die Gleichung vonPetukhov undPopov beschreiben. Diese Gleichung wird daher vorläufig für hohe Prandtl- und Schmidt-Zahlen empfohlen. Sie ist auch den weit verbreiteten Beziehungen vonColburn und vonDittus undBoelter überlegen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

Defined by Eq. 13

f :

Friction factor, (D/2u 2av )d P/d x

Pr :

Prandtl number evaluated at Tav

Pre :

Effective Prandtl number, vee

Prt :

Turbulent Prandtl number, ɛmh

q :

Heat flux

r :

Radial coordinate, from centerline

R+ :

Ru*

Re :

Pipe Reynolds number

St :

Stanton number

St c :

Stanton number from Colburn equation

St DB :

Stanton number from Dittus-Boelter equation

St s :

Stanton number given by Sparrow et al. analytical solution (ref. 2)

T :

Fluid temperature

T+ :

T/(qw/ϱcu*)

u :

Fluid velocity

u* :

\(\sqrt {\tau _W /\varrho } \)

u+ :

u/u*

y :

Coordinate distance normal to wall

yb :

Thickness of viscous influenced region

y+ :

yu*

α:

Thermal diffusivity

αe :

α + ɛh

ɛh :

Eddy diffusivity of heat

ɛm :

Eddy diffusivity of momentum

ϑ :

(Tw Tc)/(Tw -@#@ Tav)

ν :

Kinematic viscosity

τ:

Local time average shear stress

φ :

uc/uav

av:

Mixed-mean value

c:

Quantity evaluated at pipe centerline

w:

Quantity evaluated at wall(y=0)

References

  1. Deissler, R. G.: Analysis of turbulent heat transfer, mass transfer and friction in smooth tubes at high Prandtl and Schmidt numbers. NACA Report 1210 (1955).

  2. Sparrow, E. M., T. M. Hallman andR. Seigel: Turbulent heat transfer in the thermal entrance region of a pipe with uniform heat flux. Appl. Sci. Res., A7 (1957) pp. 37–52.

    Google Scholar 

  3. Petukhov, B. S., and V. N.Popov: Theoretical calculation of heat exchange and frictional resistance in turbulent flow in tubes of an incompressible fluid with variable physical properties. Trans. in High Temperature 1, pp. 69–83.

  4. Friend, W. L., andA. B. Metzner: Turbulent heat transfer inside tubes, and the analogy among heat, masa and momentum transfer. A. I. Ch. E. Jour. 4 (1958) pp. 393–402.

    Google Scholar 

  5. Knudsen andKatz: Fluid Dynamics and Heat Transfer. McGraw-Hill (1958).

  6. Malina, J. A., andE. M. Sparrow: Variable-property, constant-property, and entrance-region heat transfer results for turbulent flow of water and oil in a circular tube, Chem. Eng. Sci. 19 (1964) pp. 953–962.

    Google Scholar 

  7. Drew, T. B., E. C. Koo andW. H. McAdams: Trans. A. I. Ch. E. 28 (1933) p. 56.

    Google Scholar 

  8. Reichabdt, H.: The principles of turbulent heat transfer. Transl. by P. A. Schoeck in Recent Advances in Heat and Mass Transfer, ed. by J. P. Hartnett, McGraw-Hill (1961) pp. 223-252.

  9. Hufschmidt, W., E. Burck andW. Riebold: Die Bestimmung örtlicher und mittlerer Wärmeübergangszahlen in Rohren bei hohen Wärmestromdichten. Int. J. Heat Mass Transfer 9 (1966) pp. 539–565.

    Google Scholar 

  10. Webb, R. L.: Turbulent heat transfer in tubes having two-dimensional roughness, including the effect of Prandtl number. Ph. D. Thesis, University of Minnesota (1969).

  11. Dipprey, D. F., andR. H. Sabersky: Heat and momentum transfer in smooth and rough tubes at various Prandtl numbers. Int. J. Heat Mass Transfer 6 (1963) pp. 329–353.

    Google Scholar 

  12. Allen, R. W., andE. R. G. Eckert: Friction and heat transfer measurements to turbulent pipe flow of water(Pr=7 and 8) at uniform wall heat flux. Trans. ASME, J. Heat Trans. 86 (1964) pp. 301–310.

    Google Scholar 

  13. Linton, W. H., andT. K. Sherwood: Mass transfer from solid shapes to water in streamline and turbulent flow. Chem. Engg. Prog. 46 (1950) pp. 258–264.

    Google Scholar 

  14. Meyerink, E. S. C., andS. K. Friedlander: Diffusion and diffusion controlled reactions in fully developed turbulent pipe flow. Chem. Engg. Sci. 17 (1962) pp. 121–135.

    Google Scholar 

  15. Kishinevsky, M. K., T. B. Denisova andV. A. Parminov: The study of mass transfer from the wall of a smooth tube to a turbulent liquid flow at high Schmidt numbers. Int. Jour. Heat Mass Transfer 9 (1966) pp. 1449–1453.

    Google Scholar 

  16. Harriott, P., andR. M. Hamilton: Solid-liquid mass transfer in turbulent pipe flow. Chem. Engg. Sci. 20 (1965) pp. 1073–1078.

    Google Scholar 

  17. Dawson, D. A.: High Schmidt number mass transfer near rough surfaces. Ph. D. Thesis, University of Toronto (Canada) (1968).

  18. Hubbard, D. W., andE. N. Lightfoot: Correlation of heat and mass transfer data for high Schmidt and Reynolds numbers. I. and E. C. Fund. 5 (1966) pp. 370–379.

    Google Scholar 

  19. Petukhov, B. S.: Heat transfer and friction in turbulent pipe flow with variable physical properties. Advances in Heat Transfer, Ed. by Hartnett and Irvine 6 (1970) pp. 503–564.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, R.L. A critical evaluation of analytical solutions and reynolds analogy equations for turbulent heat and mass transfer in smooth tubes. Wärme- und Stoffübertragung 4, 197–204 (1971). https://doi.org/10.1007/BF01002474

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01002474

Keywords

Navigation