Skip to main content
Log in

Neurodynamic system theory: Scope and limits

  • Published:
Theoretical Medicine Aims and scope Submit manuscript

Abstract

This paper proposes that neurodynamic system theory may be used to connect structural and functional aspects of neural organization. The paper claims that generalized causal dynamic models are proper tools for describing the self-organizing mechanism of the nervous system. In particular, it is pointed out that ontogeny, development, normal performance, learning, and plasticity, can be treated by coherent concepts and formalism. Taking into account the self-referential character of the brain, autopoiesis, endophysics and hermeneutics are offered as elements of a poststructuralist brain (-mind-computer) theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rumelhart DE, McClelland JL.Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vols 1–2. Cambridge, MA: MIT Press, 1986.

    Google Scholar 

  2. Churchland P.Neurophilosophy: Toward a Unified Science of the Mind-Brain. Cambridge, MA: MIT Press, 1986.

    Google Scholar 

  3. Popper KR, Eccles JC.The Self and Its Brain. An Argument for Interactionism. Berlin: Springer-Verlag, 1977.

    Google Scholar 

  4. Szentágothai J. Downward causation?Ann Rev Neurosci 1984; 7:1–11.

    Google Scholar 

  5. MacKay DM. Opening remarks.Advances in Physiological Sciences 1981; 30:ix-x.

    Google Scholar 

  6. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity.Bulletin of Mathematical Biophysics 1943; 5: 115–33.

    Google Scholar 

  7. Rosenblatt F.Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanism. Washington, DC: Spartan Books, 1961.

    Google Scholar 

  8. Penrose R.The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics. Oxford: Oxford University Press, 1989.

    Google Scholar 

  9. Donald MJ. Quantum theory and the brain.Proc R Soc Lond [A] 1990; 427:43–93.

    Google Scholar 

  10. Yates FE. Physical causality and brain theories.Am J Physiol 1980; 238:R277-R290.

    Google Scholar 

  11. Basar E. Toward a physical approach to integrative physiology.Am J Physiol 1983; 245:R510-R533.

    Google Scholar 

  12. Bell JS.Speakable and Unspeakable in Quantum Mechanics. Cambridge: Cambridge University Press, 1987.

    Google Scholar 

  13. Stapp HP. Mind, matter and quantum mechanics.Foundations of Physics 1982; 12:363–99.

    Google Scholar 

  14. Wehrli FW, Shaw D, Kneeland JB.Biomedical Magnetic Resonance Imaging: Principles, Methodology and Applications. New York: VCH, 1988.

    Google Scholar 

  15. Roland PE, Eriksson L, Stone-Elander S. Does mental activity change the oxidative metabolism of the brain?J Neurosci 1987; 7:2373–89.

    Google Scholar 

  16. Katzir-Katchalsky AK, Rowland V, Blumenthal R. Dynamic patterns of brain cell assemblies.Neuroscience Research Program Bulletin 1974; 12:1–187.

    Google Scholar 

  17. Kubat J, Zeman J, eds.Entropy and Information in Science and Philosophy. Amsterdam: Elsevier, 1975.

    Google Scholar 

  18. Lindblad G.Non-Equilibrium Entropy and Irreversibility. Dordrecht: Reidel, 1983.

    Google Scholar 

  19. Érdi P. Hierarchical thermodynamic approach to the brain.Int J Neurosci 1983; 20:193–216.

    Google Scholar 

  20. Brillouin L.Science and Information Theory. 2nd ed. London: Academic Press, 1962.

    Google Scholar 

  21. Denbigh K. How subjective is entropy.Chemistry in Britain 1981; 17:168–85.

    Google Scholar 

  22. Shimizu H, Yamaguchi Y, Tsuda I, Yano M. Pattern recognition based on holonic information dynamics: towards a synergetic computer. In: Haken H, ed.Complex Systems — Operational Approaches. Berlin: Springer-Verlag, 1985:225–39. (Springer Series in Synergetics; Vol 31).

    Google Scholar 

  23. Hofstadter D.Gödel, Escher, Bach: An Eternal Golden Braid. New York: Basic Books, 1979.

    Google Scholar 

  24. Bartlett SJ, Suber P, eds.Self-Reference. Reflections on Reflexivity. Dordrecht: Martinus Nijhoff Publishers, 1987.

    Google Scholar 

  25. Brush S.The Kind of Motion We Call Heat. Amsterdam: North-Holland, 1976.

    Google Scholar 

  26. Bunge M.Causality and Modern Science. 3rd ed. New York: Dover, 1979.

    Google Scholar 

  27. Varela FJ. On observing natural systems.Co-Evolutionary Quarterly 1976; 10:26–31.

    Google Scholar 

  28. Sattler R.Biophilosophy: Analytic and Holistic Perspectives. Berlin: Springer-Verlag, 1986.

    Google Scholar 

  29. Rosen R. The epistemology of complexity. In: Kelso JAS, Mandell AJ, Shlesinger MF, eds.Dynamic Patterns in Complex Systems. Singapore: World Scientific, 1988:7–30.

    Google Scholar 

  30. Kampis G.Self-Modifying Systems in Biology and Cognitive Science: A New Framework for Dynamics, Information and Complexity. Oxford: Pergamon Press, 1991.

    Google Scholar 

  31. Érdi P. Self-organization in the nervous system: network structure and stability. In: Dvořak I, Holden AV, eds.Mathematical Approaches to Brain Functioning Diagnostics. Manchester: Manchester University Press, 1991:31–43.

    Google Scholar 

  32. Wigner EP. Statistical properties of real symmetric matrices with many dimensions. MacPhail MS, ed.Proceedings of the Fourth Canadian Mathematics Congress. Toronto: University of Toronto Press, 1959: 174–84.

    Google Scholar 

  33. May RM. Will a large complex system be stable?Nature 1972; 238:413–14.

    Google Scholar 

  34. Érdi P, Tóth J. What is and what is not stated by the May-Wigner theorem?J Theor Biol 1990; 145:137–40.

    Google Scholar 

  35. Hirsch MW. The dynamical systems approach to differential equations.Bulletin of the American Mathematical Society 1984; 11:1–64.

    Google Scholar 

  36. Hirsch MW. Convergent activation dynamics in continuous time networks.Neural Networks 1989; 2:331–49.

    Google Scholar 

  37. Changeux J-P.Neuronal Man. New York: Oxford University Press, 1985.

    Google Scholar 

  38. Edelman GM.Neural Darwinism. New York: Basic Books, 1987.

    Google Scholar 

  39. Grossberg S, ed.The Adaptive Brain. Vols 1–2. Amsterdam: North-Holland, 1988.

    Google Scholar 

  40. Ashby WR. Principles of the self-organizing systems. In: von Foerster H, Zopf GW, eds.Principles of Self-Organization. Oxford: Pergamon Press, 1962.

    Google Scholar 

  41. Székely G, Szentágothai J. Experiments with “model nervous system”.Acta Biologica Academica Scientica Hungarica 1962; 12:253–69.

    Google Scholar 

  42. Szentágothai J. Self-organization: the basic principle of neural functions.Theor Med 1993; 14: 101–16.

    Google Scholar 

  43. Fromherz P. Self-organization of the fluid mosaic of charged channel proteins in membranes.Proc Natl Acad Sci USA 1988; 85:6353–7.

    Google Scholar 

  44. Llinas RR. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function.Science 1988; 242:1654–64.

    Google Scholar 

  45. Heidman T, Changeux J-P. Un modèle moléculaire de régulation d'efficacité d'une synapse chimique au niveau postsynaptique.Comptes Rendus de l'Académie des Sciences 1982; 295:665–70.

    Google Scholar 

  46. Selverston AI, Moulins M.The Crustacean Stomatogastric System. Berlin: Springer-Verlag, 1987.

    Google Scholar 

  47. Marder E, Nusbaum MP. Peptidergic modulation of the motor pattern generators in the somatogastric ganglion. In: Carew TJ, Kelley DB, eds.Perspectives in Neural Systems and Behaviour. New York: Alon R Lise Inc, 1989:73–91.

    Google Scholar 

  48. Grillner S, Wallén P, Brodin L, Lansner A. Neuronal network generating locomotor behaviour in lamprey: circuitry, transmitters, membrane properties, and simulation.Annu Rev Neurosci 1991; 14:169–99.

    Google Scholar 

  49. Buzsáki G. The thalamic clock: emergent properties.Neuroscience 1991; 2/3:351–64.

    Google Scholar 

  50. Buzsáki G. Two-stage model of memory trace formation: a role for “noisy” brain states.Neuroscience 1989; 31:551–70.

    Google Scholar 

  51. Buzsáki G. Feed-forward inhibition in the hippocampal formation.Prog Neurobiol 1984; 22:131–53.

    Google Scholar 

  52. Freund TF, Antal M. Septal GABAergic control of the hippocampus: a novel mechanism.Nature 1988; 336:170–3.

    Google Scholar 

  53. Amaral DG, Witter MP. The three-dimensional organization of the hippocampal formation: a review of anatomical data.Neuroscience 1989; 3:571–91.

    Google Scholar 

  54. Freeman WJ, Skarda CA. Spatial EEG patterns, nonlinear dynamics and perception. The neo-Sherringtonian view.Brain Res Brain Res Rev 1985; 10:147–75.

    Google Scholar 

  55. Wilson MA, Bower JM. Cortical oscillations and temporal interactions in a computer simulation of piriform cortex.J Neurophysiol 1992; 981–95.

  56. Gray CM, König P, Engel AK, Singer W. Oscillatory response in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus properties.Nature 1989; 338:334–7.

    Google Scholar 

  57. Eckhorn R, Bauer R, Jordan W, et al. Coherent oscillations: a mechanism of feature linking in the visual cortex?Biol Cybern 1988; 60:121–30.

    Google Scholar 

  58. Crick F, Koch C. Towards a neurobiological theory of consciousness.Seminars in Neuroscience 1990; 2:263–75.

    Google Scholar 

  59. Szentágothai J. The neuron network of the cerebral cortex. A functional interpretation. [The Ferrier Lecture 1977].Proc R Soc Lond [Biol] 1978; 201:219–48.

    Google Scholar 

  60. Szentágothai J. The modular architectonic principle of neural centers.Rev Physiol Biochem Pharmacol 1983; 98:11–61.

    Google Scholar 

  61. Szentágothai J. The architecture of neural centers and understanding neural organization.Advances in Physiological Research 1987:111–29.

  62. Szentágothai J, Érdi P. Self-organization in the nervous system.Journal of Social and Biological Structures 1989; 12:367–84.

    Google Scholar 

  63. Thom R.Structural Stability and Morphogenesis. New York: Benjamin, 1975.

    Google Scholar 

  64. Tsuda I. Chaotic itineracy as a dynamical basis of hermeneutics in brain and mind.World Futures 1991; 32:167–84.

    Google Scholar 

  65. Skarda CA, Freeman WJ. How brain makes chaos in order to make sense of the world.Behavioral and Brain Sciences 1987; 10:161–95.

    Google Scholar 

  66. Dvořak I, Holden AV, eds.Mathematical Approaches to Brain Functioning Diagnostics. Manchester: Manchester University Press, 1991.

    Google Scholar 

  67. Grassberger P, Procaccaia I. Characterisation of strange attractors.Physics Review Letters 1983; 50:346–9.

    Google Scholar 

  68. Barna G. Statistical approach for computing the largest Lyapunov exponent. In: Fuzzy Logic Systems Institute (FLSI, Japan), ed.Proceedings of the 2nd International Conference on Fuzzy Logic and Neural Networks. Iizuka: FLSI, 1992:921–4.

    Google Scholar 

  69. Babloyantz A, Salazar JM, Nicolis C. Evidence of chaotic dynamics of brain activity during the sleep cycle.Physics Letters 1985; 111A:152–6.

    Google Scholar 

  70. Babloyantz A, Destexhe A. 1986. Low-dimensional chaos in an instance of epilepsy.Proc Natl Acad Sci USA 1986; 83:3513–17.

    Google Scholar 

  71. Soong CK, Stuart CIJM. Evidence of chaotic dynamics underlying the human alpha-rhythm electro-encephalogram.Biol Cybern 1989; 62:55–62.

    Google Scholar 

  72. Gallez D, Babloyantz A. Predictability of human EEG: a dynamic approach.Biol Cybern 1991; 64:381–91.

    Google Scholar 

  73. Nicolis G, Prigogine I.Self-Organization in Nonequilibrium Systems. New York: Wiley-Interscience, 1977.

    Google Scholar 

  74. Haken H.Synergetics: An Introduction. Berlin: Springer-Verlag, 1977.

    Google Scholar 

  75. Maturana HR, Varela FJ.Autopoiesis and Cognition. Dordrecht, Reidel, 1980.

    Google Scholar 

  76. Varela FJ.Principles of Biological Autonomy. Amsterdam: North-Holland, 1979.

    Google Scholar 

  77. Spencer-Brown G.Laws of Form. London: Allen and Unwin, 1969.

    Google Scholar 

  78. Krausz M, ed.Relativism Interpretation and Confrontation. Notre Dame, IN: University of Notre Dame, 1989.

    Google Scholar 

  79. Goodman N.Fact, Fiction and Forecast. Cambridge, MA: Harvard University Press, 1955.

    Google Scholar 

  80. Rössler OE. Endophysics. In: Casti JL, Karlqvist A, eds.Real Brains, Artificial Minds. Amsterdam: North-Holland, 1987: 25–46.

    Google Scholar 

  81. Grössing G, Atmanspacher H.Quantum Endophysics and Irreversibility of Entangled Systems. Vienna: Austria Institute for Non-Linear Studies, 1993 (unpublished manuscript).

    Google Scholar 

  82. Tsuda I. A hermeneutic process of the brain.Progress in Theoretical Physics. Supplementum 1984; 79:241–59.

    Google Scholar 

  83. Pylyshin Z.Cognition and Computation. Cambridge, MA: MIT Press, 1984.

    Google Scholar 

  84. Pattee HH. The measurement problem in physics, computation, and brain theories. In: Carvallo ME, ed.Nature, Cognition and System. Vol II. Dordrecht: Kluwer, 1992:179–92.

    Google Scholar 

  85. Érdi P, Gröbler T, Marton P. On the double architecture of the semantic memory. In: Carvallo ME, ed.Nature, Cognition and System. Vol II. Dordrecht: Kluwer, 1992:193–203.

    Google Scholar 

  86. Gröbler T, Marton P, Érdi P. On the dynamic organization of memory. A mathematical model of associative free recall.Biol Cybern 1991: 65:73–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Érdi, P. Neurodynamic system theory: Scope and limits. Theor Med Bioeth 14, 137–152 (1993). https://doi.org/10.1007/BF00997272

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00997272

Key words

Navigation