Skip to main content
Log in

Structural alterations in synaptosomal membrane-associated proteins and lipids by transient middle cerebral artery occlusion in the cat

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We have previously reported that ischemia reperfusion injury results from free radical generation following transient global ischemia, and that this radical induced damage is evident in the synaptosomal membrane of the gerbil. [Hall et al, (1995) Neuroscience 64: 81–89] In the present study we have extended these observations to transient focal ischemia in the cat. We prepared synaptosomal membranes from frontal, parietal-temporal, and occipital regions of the cat cerebral cortex with reperfusion times of 1 and 3 hours following 1 hour right middle cerebral artery occlusion. The membranes were selectively labeled with protein and lipid specific paramagnetic spin labels and analyzed using electron paramagnetic resonance spectrometry. There were significant motional changes of both the protein and lipid specific spin labels in the parietal-temporal and occipital regions with 1 hour reperfusion; but, both parameters returned to control values by 3 hours reperfusion. No significant changes were observed in the normally perfused frontal pole at either reperfusion time. These results support the argument that free radicals play a critical role in cell damage at early reperfusion times following ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siesjö, B. K., and Bengtsson, F. 1989. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J. Cereb. Blood Flow Metab. 9:127–140.

    Google Scholar 

  2. Meyer, F. B., Sundt, T. M., Jr., and Yanagihara, T. 1987. Focal cerebral ischemia: pathophysiologic mechanisms and rationale for future avenues of treatment. Mayo Clin. Proc. 62:35–55.

    Google Scholar 

  3. Cao, W., Carney, J. M., Duchon, A., Floyd, R. A., and Chevion, M. 1988. Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci. Lett. 88:233–238.

    Google Scholar 

  4. Floyd, R. A., and Carney, J. M. 1991. Age influence on oxidative events during brain ischemia/reperfusion. Arch. Gerentol. Geriatr. 12:155–177.

    Google Scholar 

  5. Hall, N. C., Carney, J. M., Cheng, M. S., and Butterfield, D. A. 1995a. Ischemia/reperfusion induced changes in membrane proteins and lipids of gerbil cortical synaptosomes. Neuroscience. 64: 81–89.

    Google Scholar 

  6. Dean, R. T., Thomas, S. M., Vince, G., and Wolff, S. P. 1986. Oxidation induced proteolysis and its possible restriction by some secondary protein modification. Biomed. Biochim. Acta. 45:1563–1573.

    Google Scholar 

  7. Simpson, J. A., Narita, S., Geiseg, S., Gebicki, S., Gebicki, J. M., and Dean, R. T. 1992. Long-lived reactive species on free radical-damaged proteins. Biochem. J. 282:621–624.

    Google Scholar 

  8. Stadtman, E. R. 1990a. Metal ion-catalyzed oxidation of proteins: Biochemical mechanism and biological consequences. Free Radic. Biol. Med. 9:315–325.

    Google Scholar 

  9. Oliver, C. N., Stark-Reed, P. E., Stadtman, E. R., Liu, G. J., Carney, J. M., and Floyd, R. A. 1990. Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc. Natl. Acad. Sci. USA. 87:5144–5147.

    Google Scholar 

  10. Rivett, A. J., Roseman, J. E., Oliver, C. N., Levine, R. L. and Stadtman, E. R. 1987, 317–328,in E. A. Khairallah, J. S. Bond and J. W. Bird (eds.), intracellular protein catabolism. Liss, New York.

    Google Scholar 

  11. Hensley, K., Carney, J. M., Hall, N. C., Shaw, W., and Butterfield, D. A. 1994. Electron paramagnetic resonance investigations of free radical induced alterations in neocortical synaptosomal membrane protein infrastructure. Free Radic. Biol. Med. 17:321–331.

    Google Scholar 

  12. Hall, N. C., Carney, J. M., Cheng, M. S., and Butterfield, D. A. 1995b. Prevention of ischemia/reperfusion induced alterations is synaptosomal membranes by treatment with DFMO of PBN. Neuroscience, in press.

  13. Hall, E. D., Andrus, P. K., Althaus, J. S., and Von Voigtlander, P. F. 1993. Hydroxyl radical production and lipid peroxidation parallels selective post-ischemic vulnerability in gerbil brain. J. Neurosci. Res. 34:107–112.

    Google Scholar 

  14. Chan, P. H., Schmidley, J. W., Fishman, R. A., and Longar, S. M. 1984. Brain injury, edema, and vascular permeability changes induced by oxygen derived free radicals. Neurology. 34:315–320.

    Google Scholar 

  15. Chan, P. H., Yurko, M., and Fishman, R. A. 1982. Phospholipid degradation and cellular edema induced by free radicals in brain cortical slices. J. Neurochem. 38:525–531.

    Google Scholar 

  16. van Ginkel, G., and Sevanian, A. 1994. Lipid peroxidation-induced membrand structural alterations. Methods Enzymol. 233: 273–288.

    Google Scholar 

  17. Meyer, K. L., Dempsey, R. J., Roy, M. W., and Donaldson, D. L. 1985. Somatosensory evoked potentials as a measure of experimental cerebral ischemia. J. Neurosurg. 62:269–275.

    Google Scholar 

  18. Barnes, G. 1991. Ph. D. Thesis. University of Kentucky.

  19. Ueda, T., Greengard, T., Berzins, K., Cohen, R. S., Blomberg, F., Grab, D. G., and Siekevitz, P. 1979. Subcellular distribution in cerebral cortex of two proteins phosphorylated by c-AMP-dependent protein kinase. J. Cell. Biol. 83:308–391.

    Google Scholar 

  20. Umhauer, S. A., Isbell, D. T., and Butterfield, D. A. 1992. Spin labelling of membrane proteins in mammalian brain synaptic plasma membranes: partial characterization. Analyt. Lett: 25: 1201–1215.

    Google Scholar 

  21. Umhauer, S. A. 1992. Ph. D. Thesis. University of Kentucky.

  22. Lowry, O. H., Rosenbrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  23. Butterfield, D. A. 1982. Spin labeling in disease. 4:1–78,in L. J. Berliner and J. Reuben (eds.), Biological Magnetic Resonance. Plenum Press, New York.

    Google Scholar 

  24. Butterfield, D. A., Hensley, K., Hall, N., Umhauer, S. and Carney, J. M. 1993. Interaction of tacrine and velnacrine with neocortical synaptosomal membranes: relevance to Alzheimer's disease. Neurochem. Res. 18:989–994.

    Google Scholar 

  25. Farmer, B. T., Harmon, T. M., and Butterfield, D. A. 1985. ESR studies of the erythrocyte membrane skeleton protein network: influence of the state of aggregation of spectrin on the physical state of membrane proteins, bilayer lipids, and cell surface glycoproteins. Biochim. Biophys. Acta. 821:420–430.

    Google Scholar 

  26. Wyse, J., and Butterfield, D. A. 1988. Electron spin resonance and biochemical studies of the interaction of the polyamine, spermine, with the skeletal network of protein in human erythrocyte membranes. Biochim. Biophys. Acta. 941:141–149.

    Google Scholar 

  27. Wolff, S. P., Garner, A., and Dean, R. T. 1986. Free radicals, lipids, and protein degradation. Trends Biochem. Sci. 11:27–31.

    Google Scholar 

  28. Halliwell, B., and Gutteridge, J. M. C. 1989. Free Radicals in Biology and Medicine. Clarendon Press, Oxford.

    Google Scholar 

  29. Schmidley, J. W. 1990. Free radicals in central nervous system ischemia. Curr. Concepts Cerebrovas. Dis. and Stroke. 25:7–12.

    Google Scholar 

  30. Davies, K. J. A., Lin, S. W., and Pacifici, R. E. 1987. Protein damage and degradation by oxygen radicals. J. Biol. Chem. 262: 9895–9901.

    Google Scholar 

  31. Stadtman, E. R. 1990b. Covalent modification reactions are marking step protein turnover. Biochemistry. 29:6323–6331.

    Google Scholar 

  32. Stadtman, E. R. 1992. Protein oxidation and aging. Science. 257: 1220–1224.

    Google Scholar 

  33. Smith, C. D., Carney, J. M., Starke, R. P., Oliver, C. N., Stadtman, E. R., Floyd, R. A., and Markesbery, W. R. 1991. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 88:10540–3.

    Google Scholar 

  34. Butterfield, D. A. 1985. Spectroscopic methods in degenerative neurological diseases. Crit. Rev. Neurobiol. 2:169–240.

    Google Scholar 

  35. Wilson, D. F., Gomi, S., Pastuszko, A., and Greenberg, J. H. 1993. Microvascular damage in the cortex of cat brain from middle cerebral artery occlusion and reperfusion. J. Appl. Physiol. 74:580–589.

    Google Scholar 

  36. Sakaki, T., Tsunoda, S., and Morimoto, T. 1991. The influence of the calcium antagonist Nimodipine and induced hypertension on the behavior of the cerebral pial arteries, the blood brain barrier, cerebral edema, and cerebral infarction in cats with one-hour occlusion of the middle cerebral artery. Neurosurgery. 28:267–272.

    Google Scholar 

  37. Araki, N., Greenberg, J. H., Uematsu, D., Sladky, J. T., and Reivich, M. 1992. Effect of superoxide dismutase on intracellular calcium in stroke. J. Cereb. Blood Flow Metab. 12:43–52.

    Google Scholar 

  38. Uematsu, D., Greenberg, J. H., Reivich, M., and Karp, A. 1988. In vivo measurement of cytosolic free calcium during cerebral ischemia and reperfusion. Ann. Neurol. 24:420–428.

    Google Scholar 

  39. Kontos, H. A., and Wei, E. P. 1986. Superoxide production in experimental brain injury. J. Neurosurg. 64:803–807.

    Google Scholar 

  40. Kontos, H. A. 1989. Oxygen radicals in CNS damage. Chem. Biol. Interact. 72:229–255.

    Google Scholar 

  41. Patt, A., Harken, A. H., Burton, T. C., Rodell, T. C., Piermattei, D., Schorr, W. J., Parker, N. B., Berger, E. M., Horesh, I. R., Terada, L. S., Linas, S. L., Cheronis, J. C., and Repine, J. E. 1988. Xanthine oxidase-derived hydrogen peroxide contributes to ischemia reperfusion-induced edema in gerbil brains. J. Clin. Invest. 81:1556–1562.

    Google Scholar 

  42. Armstead, W. M., Mirro, R., Busija, D. W., and Leffler, C. W. 1988. Postischemic generation of superoxide anion by newborn pig brain. Am. J. Physiol. 255 (Heart Circ. Physiol. 24):H401-H403.

    Google Scholar 

  43. Sevanian, A., Stein, R. A., and Mead, J. F. 1981. Metabolism of epoxidized phospatidylcholine by phospholipase A2 and epoxide hydrolase. Lipids. 16:781–789.

    Google Scholar 

  44. Scott, D. L., White, S. P., Otwinowski, Z., Yuan, W., Gelb, M. H., and Sigler, P. B. 1990. Interfacial catalysis: The mechanism of phospholipase A2. Science. 250:1541–1546.

    Google Scholar 

  45. Dempsey, R. J., Roy, M. W., Cowen, D. E., and Combs, D. J. 1988. Polyamine inhibition preserves somatosensory evoked potential activity after transient cerebral ischemia. Neurol. Res. 10: 141–144.

    Google Scholar 

  46. Dempsey, R. J., Combs, D. J., Olson, J. W., and Maley, M. 1988. Brain ornithine decarboxlase activity following transient cerebral ischemia: relationship to cerebral oedema development. Neurol. Res. 10:175–178.

    Google Scholar 

  47. Kindy, M. S., Hu, Y., and Dempsey, R. J. 1994. Blockade of ornithine decarboxylase enzyme protects against ischemic brain damage. J. Cereb. Blood Flow Metab. 14:1040–1045.

    Google Scholar 

  48. Muszynski, C. A., Robertson, C. S., Goodman, J. C., and Henley, C. M. 1993. DFMO reduces cortical infarct volume after middle cerebral artery occlusion in the rat. J. Cereb. Blood Flow Metab. 13:1033–1037.

    Google Scholar 

  49. Nelson, C. W., Wei, E. P., Povlishock, J. T., Kontos, H. A., and Moskowitz, M. A. 1992. Oxygen radicals in cerebral ischemia. Am. J. Physiol. 263 (Heart Circ. Physiol. 32):H1346-H1362.

    Google Scholar 

  50. Hossmann, K. A. 1971. Cortical steady potential, impedance and excitability changes during and after total ischemia of cat brain. Experimental Neurology. 32:163–175.

    Google Scholar 

  51. Hossmann, K. A., and Schuier, F. J. 1980. Experimental brain infarcts in cats. I. Pathophysiological observations. Stroke. 11: 583–592.

    Google Scholar 

  52. Hossmann, K.-A. 1988. Resuscitation potentials after prolonged global cerebral ischemia in cats. Crit. Care Med. 16:964–971.

    Google Scholar 

  53. Uematsu, D., Araki, N., Greenberg, J. H., Sladky, J., and Reivich, M. 1991. Combined therapy with MK-801 and nimodipine for protection of ischemic brain damage. Neurology. 41:88–94.

    Google Scholar 

  54. Cao, X., and Phillis, J. W. 1994. alpha-Phenyl-tert-butyl-nitrone reduces cortical infarct and edema in rats subjected to focal ischemia. Brain Res. 644:267–72.

    Google Scholar 

  55. Sen, S., and Phillis, J. W. 1993. alpha-Phenyl-tert-butyl-nitrone (PBN) attenuates hydroxyl radical production during ischemia-reperfusion injury of rat brain: an EPR study. Free Radic Res Commun. 19:255–65.

    Google Scholar 

  56. Phillis, J. W., and Clough-Helfman, C. 1990. Protection from cerebral ischemic injury in gerbils with the spin trap agent N-tert-butyl-α-phenylnitrone (PBN). Neurosci. Lett. 116:315–319.

    Google Scholar 

  57. Carney, J. M., Hall, N. C., Cheng, M. S., Wu, J., and Butterfield, D. A. Protein and lipid oxidation following ischemia/reperfusion injury, the role of polyamines: an electron paramagnetic resonance analysis.In B. K. Siesjö and T. Wieloch (eds.), Cellular and Molecular Mechanisms of Ischemic Brain Damage, Raven Press, New York, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, N.C., Dempsey, R.J., Carney, J.M. et al. Structural alterations in synaptosomal membrane-associated proteins and lipids by transient middle cerebral artery occlusion in the cat. Neurochem Res 20, 1161–1169 (1995). https://doi.org/10.1007/BF00995379

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00995379

Key words

Navigation