Skip to main content
Log in

Karyotype analysis of the sea urchinParacentrotus lividus (Echinodermata): evidence for a heteromorphic chromosome sex mechanism

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A consistent diploid number of 2n = 36 was determined for the sea urchinParacentrotus lividus from the Gulf of Palermo by analysis of mitotic chromosomes of both early developing embryos and male gonads. The haploid numbern = 18 was determined by counts of spermatocyte bivalents at diakinesis. A heteromorphic chromosome sex mechanism of the XY type is likely present in this species. This is indicated by the occurrence of a chromosomal pair, pair No. 2, which is heteromorphic in both morphology and size in about 50% of the mitotic figures (metaphases and anaphases) of einbryos. In addition, heteromorphism of the same pair of chromosomes occurred during spermatogonial metaphases in the five male specimens investigated here. The detection of a low chromosome number (2n = 36) compared to other echinoids (2n = 42 to 44), a heteromorphic chromosome sex system and the involvement of three chromosome pairs in nucleolar organization (NORs) provide evidence of the specialization of theP. lividus karyotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amemiya CT, Gold JR (1990) Cytogenetics studies in North American minnows (Cyprinidae). XVII. Chromosomal NOR phenotypes of 12 species with comments on cytosystematic relationship among 50 species. Hereditas 112: 231–247

    Google Scholar 

  • Ansari HA, Kaul D (1979) Inversion polymorphism in common green pigeon,Treron phoenicoptera (Latham) (Aves). Jap J Genet 54: 197–202

    Google Scholar 

  • Auclair W (1965) The chromosomes of sea urchins, especiallyArbacia punctulata; a method for studying unsectioned eggs at first cleavage. Biol Bull mar biol Lab, Woods Hole 128: 169–176

    Google Scholar 

  • Barbieri R, Izzo V, Cantone M, Duro G, Giudice G (1992) Regulation of ribosomal RNA synthesis in sea urchin embryos. Atti Accad naz Lincei Re 9: 369–374

    Google Scholar 

  • Bickmore WA, Sumner AT (1989) Mammalian chromosome banding - an expression of genome organization. Trends Genet 5(5): 144–148

    Google Scholar 

  • Candia Carnevali MD, Bonasoro F, Melone G (1991) Microstructurc and mechanical design in the lantern ossicles of the regular sea urchinParacentrotus lividus: a scanning electron microscope study. Boll Zool 58: 1–42

    Google Scholar 

  • Christidis L (1986) Chromosomal evolution within the family Estrildidae (Aves). I. The Poeohilae. Genetica 71: 81–97

    Google Scholar 

  • Colombera D, Lazzaretto-Colombera I (1978) Chromosome evolution in some marine invertebrates. In: Battaglia B, Beardmore JA (eds) Marine organisms. Genetics, ecology and evolution. Plenum Press, New York, London, pp 487–525

    Google Scholar 

  • Colombera D, Tagliaferri F (1986) The male chromosomes of five species of echinoderms together with some technical hints. Caryologia 39: 347–352

    Google Scholar 

  • Colombera D, Venier G, Vitturi R (1977) Chromosome and DNA in the evolution of Echinoderms. Biol Zbl 96: 43–49

    Google Scholar 

  • Davis KM, Smith SA, Greenbaum IF (1986) Evolutionary implications of chromosomal polymorphism inPeromyscus boylii from southwestern Mexico. Evolution 40: 645–649

    Google Scholar 

  • Delage Y (1901) Studes experimentales sur la maturasion cytoplasmatique et sur la parthenogenes artificielle chez les echinoderms. Archs Zool exp gén 9: 285–326

    Google Scholar 

  • German J (1966) The chromosomal complement of blastomeres inArbacia punctulata. Chromosoma 20: 195–201

    Google Scholar 

  • Giudice G (1986) The sea urchin embryo. A developmental biological system. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Hale DW (1986) Heterosynapsis and suppression of chiasmata within heterozygous pericentric inversions of theSitka deer mouse. Chromosoma 94: 425–432

    Google Scholar 

  • Howell WM, Black DA (1980) Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36: 1014–1015

    Google Scholar 

  • King M (1993) Species evolution, the role of chromosome change. Cambridge University Press, Cambridge, pp 72–122

    Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position of chromosomes. Hereditas 52: 201–220

    Google Scholar 

  • Matsuoka N (1985) Biochemical phylogeny of the sea urchins of the family Toxopneustidae. Comp Biochem Physiol 80B: 767–771

    Google Scholar 

  • Matsuoka N (1986) Further immunological study of the phylogenetic relationships among sea urchins of the order Echinoida. Comp Biochem Physiol 84B: 465–468

    Google Scholar 

  • Moore W (1976) Treatise in invertebrate paleontology. Echinodermata. Vol. 2. The University of Kansas Press and the Geological Society of America, Lawrence, Kansas

    Google Scholar 

  • Moritz C (1984) The evolution of a highly variable sex chromosome inGehyra purpurascens (Gekkonidae). Chromosoma 90: 111–119

    Google Scholar 

  • Ohno S (1970) The enormous diversity in genome sizes of fish as a reflection of nature's extensive experiments with gene duplication. Trans Am Fish Soc 99: 120–130

    Google Scholar 

  • Saotome K (1987) Chromosome numbers in 8 Japanese species of sea urchins. Zool Sci 4: 483–487

    Google Scholar 

  • Saotome K (1989) Chromosome number of the sea urchinStrongylocentrotus intermedius. Chr Inform Ser 46: 11–12

    Google Scholar 

  • Saotome K (1991) Chromosome number and nucleolus organizer regions of the irregular sea urchinPeronella japonica. Chr Inform Ser 50: 32–34

    Google Scholar 

  • Sella G, Vitturi R, Ramella L, Colomba MS (1995) Chromosomal nucleolar organizer region (NOR) phenotypes in nine species of the genusOphryotrocha (Polychaeta: Dorvilleidae) Mar Biol 124: 425–433

    Google Scholar 

  • Shigei M (1974) Echinoids. In: The systematic zoology 8. (2) Echinoderms. Nakayoma Book Company, Tokyo, pp 208–332

    Google Scholar 

  • Thiriot-Quievreux C, Ayraud N (1982) Les karyotypes de quelques especes de bivalves et de gasteropodes marins. Mar Biol 70: 165–172

    Google Scholar 

  • Thiriot-Quievreux C, Insua A (1992) Nucleolar organizer region variation in the chromosomes of three oyster species. J exp mar Biol Ecol 157: 33–40

    Google Scholar 

  • Tortonese E (1965) Fauna d'Italia. Echinodermata. Calderini Eds., Bologna

  • Turner BJ, Grudzien Adkisson KP, Worrell RA (1985) Extensive chromosomal divergence within a single river basin in the gadeid fishIlyodon furcidens. Evolution 39: 122–134

    Google Scholar 

  • Vitturi R, Carbone P, Catalano E, Macaluso M (1984) Chromosome polymorphism inGobius paganellus, Linneo 1758 (Pistes, Gobiidac). Biol Bull mar biol Lab, Woods Hole 167: 658–668

    Google Scholar 

  • Vitturi R, Catalano E, Colombera D, Avila AL, Fucà A (1993a) Multiple sex-chromosome system and other karyological characterizations ofPterotrachea hyppocampus (Mollusca: Mesogastropoda). Mar Biol 115: 581–585

    Google Scholar 

  • Vitturi R, Colombera D, Catalano E (1993b) Intra-populational chromosome polymorphisms in four teleost species. Cytobios 75: 171–182

    Google Scholar 

  • Vitturi R, Libertini A, Panozzo M, Mezzapelle G (1995) Karyotype analysis and genome size in three Mediterranean species of periwinkles (Prosobranchia: Mesogastropoda). Malacologia 37(1): 123–132

    Google Scholar 

  • Vitturi R, Morello A, Montagnino L, Mezzapelle G (1994) Analysis of conventionally stained and banded chromosomes ofPelagia noctiluca (Coelenterata, Schyphomedusae): evidente for heteromorphic chromosome pair in males. Biol Zbl 113: 329–337

    Google Scholar 

  • Wilson EB (1895) Archoplasm, centrosome and chromatin in the sea urchin egg. J Morph 11: 443–478

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Sarà, Genova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipani, C., Vitturi, R., Sconzo, G. et al. Karyotype analysis of the sea urchinParacentrotus lividus (Echinodermata): evidence for a heteromorphic chromosome sex mechanism. Mar. Biol. 127, 67–72 (1996). https://doi.org/10.1007/BF00993645

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00993645

Keywords

Navigation