Skip to main content
Log in

The shakedown load boundary of an elastic-perfectly plastic structure

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the hypothesis of small displacements and combined time-variable/steady loads, the geometrical-mechanical properties of the shakedown load boundary are investigated. It is shown that, in the load space, the shakedown load boundary plays the role of yield surface, and that a certain plastic strain accumulation vector—characterizing some impending inadaptation collapse mechanism—obeys the normality rule, whereas a specific form of the maximum plastic work theorem constitutes an effective tool for the evaluation of the shakedown limit load corresponding to a specified inadaptation collapse mode. The equations governing the state of the structure at the shakedown limit are provided and the related collapse mechanism is shown to specify the shape of the steady-state response of the structure to a periodic load enveloping the load domain with an intensity slightly above the shakedown limit.

Sommario

Nell'ipotesi di piccoli spostamenti e di plasticità perfetta, si studiano le proprietà geometrico-meccaniche della frontiera del dominio dei carichi di adattamento. Si mostra come, nello spazio dei carichi, la suddetta frontiera giuoca il ruolo di superficie di plasticizzazione ed un particolare vettore di deformazione plastica accumulata—che caratterizza il meccanismo di non adattamento—segue la legge della normalità, mentre una forma specifica del teorema del massimo lavoro plastico costituisce un valido strumento per la valutazione del carico limite corrispondente ad un dato meccanismo di non adattamento. Si forniscono altresì le equazioni che governano lo stato della struttura al limite di adattamento, mostrando la capacità del relativo meccanismo di collasso a rappresentare la risposta a lungo termine della struttura a dei carichi periodici inviluppanti il dominio dei carichi con una intensità un poco al di sopra del limite di adattamento.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASMEBoiler and Pressure Vessel Code, Section III, Nuclear Power Plant Components, Div. 1, 1974.

  2. Bree, J., ‘Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermittent high heat fluxes with application to fast-nuclear-reactor fuel elements’,J. Strain Analysis 2 (1967) 226–238.

    Google Scholar 

  3. Ponter, A.R.S.,Shakedown and Ratchetting Below the Creep Range, Report EUR 8702 EN, Commission of European Communities, Brussels, 1983.

    Google Scholar 

  4. Belytschko, T., ‘Plane stress shakedown analysis by finite elements’,Int. J. Mech. Sci. 14 (1972) 619–625.

    Google Scholar 

  5. Corradi, L. and Zavelani, A., ‘A linear programming approach to shakedown analysis of structures’,Comput. Meths. Appl. Mech. Engng. 3 (1974) 37–53.

    Google Scholar 

  6. Nguyen Dang Hung and König, J.A., ‘A finite element formulation for shakedown problems using a yield criterion of the mean’,Comput. Meths. Appl. Mech. Engng. 8 (1976) 179–192.

    Google Scholar 

  7. Morelle, P. and Nguyen Dang Hung, ‘Etude numérique de l'adaptation plastique des plaques et des coques de révolution par les éléments finis d' équilibre’,J. de Méc. Théorique et Appliquée 2 (1983) 567–599.

    Google Scholar 

  8. Ponter, A.R.S. and Karadeniz, S., ‘A linear programming upper bound approach to the shakedown limit of thin shells subjected to variable thermal loading’,J. Strain Analysis 19 (1984) 221–229.

    Google Scholar 

  9. Koiter, W. T., ‘General theorems of elastic-plastic solids’ in: Sneddon, S. and Hill, R. (Eds.),Progress in Solid Mechanics, Vol. 1, North-Holland, Amsterdam, 1960, pp. 167–221.

    Google Scholar 

  10. Halphen, B., ‘Accomodation et adaptation des structures elastoviscoplastiques et plastiques’ in:Matériaux et Structures Sous Chargement Cyclique, Association Amicale des Ingenieurs Anciens Elèves de E.N.P.C., Paris, 1979, pp. 191–201.

    Google Scholar 

  11. König, J.A. and Maier, G., ‘Shakedown analysis of elastoplastic structures: a review of recent developments’,J. Nuclear Engng. Design 66 (1981) 81–95.

    Google Scholar 

  12. Gokhfeld, D.A. and Cherniavsky, D.F.,Limit Analysis of Structures at Thermal Cycling, Sijthoff & Noordhoff, Alphen aan der Rijn, The Netherlands, 1980.

    Google Scholar 

  13. König, J.A.,Shakedown of elastic-plastic Structures, PWN-Polish Scientific Publishers, Warsaw and Elsevier, Amsterdam, 1987.

    Google Scholar 

  14. Maier, G., ‘A generalization to nonlinear hardening of the first shakedown theorem for discrete elastic-plastic models’,Rendiconti Accademia Nazionale dei Lincei,LXXXI (1987) 161–174.

    Google Scholar 

  15. Polizzotto, C., Borino, G., Caddemi, S. and Fuschi, P. ‘Shakedown problems for material models with internal variables’,Eur. J. Mech./A Solids 10 (1991) 621–639.

    Google Scholar 

  16. Stein, E., Zhang, G. and König, J.A., ‘Shakedown with nonlinear strain hardening including structural computation using finite element methods’,Int. J. Plasticity 8 (1992) 1–31.

    Google Scholar 

  17. Ponter, A.R.S., ‘On the relationship between plastic shakedown and the repeated loading of creeping structures’,ASME J. Appl. Mech. 38 (1971) 437–440.

    Google Scholar 

  18. Ponter, A.R.S., ‘Deformation, displacement and work bounds for structures in a state of creep and subjected to variable loading’,ASME J. Appl. Mech. 39 (1972) 953–958.

    Google Scholar 

  19. König, J.A., ‘Shakedown criteria in the case of loading and temperature variations’,J. de Méc. Théorique et Appliquée 21 (1982) 99–108.

    Google Scholar 

  20. Weichert, D., ‘On the influence of geometrical nonlincearities of the shakedown of elastic-plastic structures’,Int. J. Plasticity 2 (1986) 135–148.

    Google Scholar 

  21. Ceradini, G., ‘On shakedown of elastic-plastic solids under dynamic actions’,Giornale del Genio Civile 4/5 (1969) 239–258 (in Italian).

    Google Scholar 

  22. Corradi, L. and Maier, G., ‘On non-shakedown theorems for elastic perfectly plastic continua’,J. Mech. Phys. Solids 22 (1973) 401–413.

    Google Scholar 

  23. Polizzotto, C., ‘Dynamic shakedown by modal analysis’,Meccanica 19 (1984) 133–144.

    Google Scholar 

  24. Polizzotto, C., Borino, G., Caddemi, S. and Fuschi, P., ‘Theorems of restricted dynamic shakedown’,Int. J. Mech. Sci. 35 (1993) 787–801.

    Google Scholar 

  25. Ponter, A.R.S., and Karadeniz, S., ‘An extended shakedown theory of structures that suffer cyclic thermal loadings: Part 1-Theory’,ASME J. Appl. Mech. 52 (1985) 877–882.

    Google Scholar 

  26. Ponter, A.R.S., and Karadeniz, S., ‘An extended shakedown theory of structures that suffer cyclic thermal loadings: Part 2-Applications’,ASME J. Appl. Mech. 52 (1985) 883–889.

    Google Scholar 

  27. Polizzotto, C., ‘A study on plastic shakedown of structures: Part I-basic properties’,ASME J. Appl. Mech. 60 (1993) 318–323.

    Google Scholar 

  28. Polizzotto, C., ‘A study on plastic shakedown of structures: Part II-Theorems’,ASME J. Appl. Mech. 60 (1993) 324–330.

    Google Scholar 

  29. Martin, J. B.,Plasticity: Fundamentals and General Results, The MIT Press, Cambridge, MA, 1975.

    Google Scholar 

  30. Lubliner, J.,Plasticity Theory, Macmillan Publishing Co, New York, 1990.

    Google Scholar 

  31. Hill, R., ‘A variational principle of maximum plastic work in classical plasticity’,Quat. J. Mech. Appl. Math. 1 (1948) 18–28.

    Google Scholar 

  32. Polizzotto, C., ‘On the conditions to prevent plastic shakedown of structures: Part I-Theory’,ASME J. Appl. Mech. 60 (1993) 15–19.

    Google Scholar 

  33. Polizzotto, C., ‘On the conditions to prevent plastic shakedown of structures: Part II-The plastic shakedown limit load’,ASME J. Appl. Mech. 60 (1993) 20–25.

    Google Scholar 

  34. Polizzotto, C., Borino, G., and Fuschi, P., ‘On the steady-state response of elastic perfectly plastic solids to cyclic loads’ in: Kleiber, M. and König, J.A. (Eds.),Inelastic Solids and Structures, Pineridge Press, Swansea, U.K., 1990, pp. 473–488.

    Google Scholar 

  35. Panzeca, T. and Polizzotto, C., ‘On shakedown of elastic plastic solids’,Meccanica 23 (1988) 94–101.

    Google Scholar 

  36. Casier, J. and Zarka, J., ‘Cyclic loading on an elastic plastic structure: practical rules’, in: S. Nemat-Nasser (Eds.),Mechanics Today, Pergamon Press, Oxford, 1979, pp.93–198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuschi, P., Polizzotto, C. The shakedown load boundary of an elastic-perfectly plastic structure. Meccanica 30, 155–174 (1995). https://doi.org/10.1007/BF00990454

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00990454

Key words

Navigation