Skip to main content
Log in

A refined theory for laminated beams: Part I—A new high order approach

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper presents a new displacement-based one-dimensional model for the analysis of multilayered composite beams. The kinematic restriction of cross sections rigid in their own planes is introduced. The axial displacements over the cross sections are represented in terms of explicitly defined piecewise polynomial warping functions with discontinuous derivatives at the interlaminae, whereas the amplitude of the displacements along the beam axis is established by means of a variational formulation. It is proved that the proposed representation of the axial displacements yields the exact solution of the ‘interior domain problem’ for a beam subjected to a transverse load varying according to a polynomial law. It is shown that two or three coordinate functions are sufficient to yield continuous distributions of equilibrated stresses except for small neighborhoods of the constrained cross sections, where a higher number of warping functions could be used in order to obtain a better accuracy. The numerical results show excellent agreement with plane stress finite element and plane strain exact solutions.

Sommario

In questo lavoro viene presentato un nuovo modello monodimensionale per l'analisi di travi composite multistrato. Viene introdotta l'ipotesi di indeformabilita delle sezioni nel proprio piano mentre gli spostamenti assiali nella sezione sono rappresentati facendo uso di funzioni ‘ingobbamento’ definite sull'intera altezza e con derivata discontinua all'in erlamina. Infine, l'ampiezza degli spostamenti lungo l'asse della trave è determinata facendo uso di una formulazione variazionale. Si mostra come la rappresentazione degli spostamenti assiali proposta sia in grado di fornire la soluzione esatta, ‘all'interno del dominio’, per una trave soggetta ad un carico trasversale variabile con legge nolinomiale. Due o tre funzioni coordinate sono sufficienti a fornire distribuzioni di sforzi che verificano l'equilibrio anche all'interlamina, a meno di zone rislrette in vicinanza di sezioni vincolate. I risultati numerici mostrano un eccellente accordo con soluzioni agli elementi finiti in stato piano di tensione e con soluzioni esatte in stato piano di deformazione.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones, R.M.,Mechanics of Composite Materials, McGraw-Hill, New York, 1975.

    Google Scholar 

  2. Horgan, C.O., ‘On Saint-Venant's principle in plane anisotropic clasticity’,J. Elasticity,2 (1972) 169–180.

    Google Scholar 

  3. Choi, I. and Horgan, C.O., ‘Saint-Venant end effects for plane deformation of sandwich strips’,Internat. J. Solids Struct.,14 (1978) 187–195.

    Google Scholar 

  4. Pagano, N.J. and Som, S.R., ‘Global-local laminate variational model’,Internat. J. Solids Struct.,19 (1983) 207–228.

    Google Scholar 

  5. Pagano, N.J., ‘Exact solutions for composite laminates in cylindrical bending’,J. Compes. Mater.,3 (1969) 398–411.

    Google Scholar 

  6. Sierakowski, R.L. and Ebcioglu, I.K., ‘On interlaminar shear stresses in composites’,J. Compos. Mater.,4 (1970) 144–149.

    Google Scholar 

  7. Pagano, N.J., ‘Exact solutions for rectangular bidirectional composites and sandwich plates,’J. Comput. Mater.,4 (1970) 20–34.

    Google Scholar 

  8. Srinivas, S. and Rao, A.K., ‘Bending, vibration and bucking of simply supported thick orthotropic rectangular plates and laminates’,Internat. J. Solids Struct.,6 (1970) 1463–1481.

    Google Scholar 

  9. Duva, J.M. and Simmonds, J.G., ‘Elementary, static beam theory is as accurate as you please’,J. Appl. Mech. ASME,57 (1990) 134–137.

    Google Scholar 

  10. Duva, J.M. and Simmonds, J.G., ‘An accurate elementary static theory of laminated thermoelastic beams’,Internat. J. Solids Struct.,26 (1990) 761–771.

    Google Scholar 

  11. Villaggio, P.,Qualitative Methods in Elasticity, Noordholf I.P., Leyden, 1977.

    Google Scholar 

  12. Reddy, J.N., ‘On relined computational models of composite laminates’,Internat. J. Num. Meth. Engng,27 (1989) 361–382.

    Google Scholar 

  13. Yang, P.C., Norris, C.H. and Stavsky, Y., ‘Elastic wave propagation in heterogeneous plates’,Internat. J. Solids Struct. 2 (1966) 665–684.

    Google Scholar 

  14. Whitney, J.M. and Pagano, N.J., ‘Shear deformation in heterogeneous anisotropic plates’,J. Appl. Mech. ASME,37 (1970) 1031–1036.

    Google Scholar 

  15. Chepiga, V.E., ‘Refined theory of multilayered shells’,Prik. Mekh.,12(11) (1976) 45–49 [Engl. transl.Sov. Appl. Mech.,12(11) 1127–1130].

    Google Scholar 

  16. Chepiga, V.E., ‘On constructing a theory of multilayered anisotropic shells with prescribed arbitrary accuracy of orderh N ,’,Izv. Akad. Nauk. SSR, Mekh. Tverd. Tela,12(4) (1977) 113–120 [Engl. transl.Mech. Salids,12(4) 98–103].

    Google Scholar 

  17. Lo, K.H., Christensen, R.M. and Wu, E.M., ‘A higher-order theory of plate deformation: Part 2, laminated plates’,J. Appl. Mech. ASME,44 (1977) 663–676.

    Google Scholar 

  18. Bhimaraddi, A. and Stevens, L.K., ‘A higher order theory for free vibration of orthotropic, homogeneous, and laminated rectangular plates’,J. Appl. Mech. ASME,51 (1984) 195–198.

    Google Scholar 

  19. Reddy, I.N., ‘A general non-linear third-order theory of plates with moderate thickness’,Internat. J. Nonlin. Meeh.,25 (1990) 677–686.

    Google Scholar 

  20. Cicala, P., ‘Consistent approximations in shell theory’,J. Engng Mech. Div., Proc. Amer. Soc. Civil Engng,33 (1962) 45–74.

    Google Scholar 

  21. Poniatovskii, V.V., ‘Theory for plates of medium thickness’,Prik. Mat. Mekh.,26(2) (1962) 335–341 [Engl. Transl.PMM,26(2) 478–486].

    Google Scholar 

  22. Poniatovskii, V.V., ‘On the theory of bending of anisotropic plates’,Prik. Mat. Mekh.,28(6) (1964) 1033–1039 [Engl. transl.PMM,28(6) 1247–1254].

    Google Scholar 

  23. Surana, K.S. and Sorem, R.M., ‘Curved shell elements based on hierachical p-approximation in the thickness direction for linear static analysis of laminated composites’,Internat. J. Num. Meth. Engng,29 (1990) 1393–1420.

    Google Scholar 

  24. Ambartsumyan, S.A.,Theory of Anisotropic Plates (Engl. transl.), Technomic, Fort Worth, Texas, 1970.

    Google Scholar 

  25. Reissner, E., ‘On transverse bending of plates, including the effect of shear deformation’,Internat. J. Solids Struct.,11 (1975) 569–573.

    Google Scholar 

  26. Levinson, M., ‘A new rectangular beam theory’,J. Sound Vibration,74 (1981) 81–87.

    Google Scholar 

  27. Reddy, J.N., ‘A simple higher-order theory for laminated composite plates’,J. Appl. Mech., ASME,51 (1984) 745–752.

    Google Scholar 

  28. Andreev, A.N. and Nemirovskii, Y.V., ‘On the theory of multilayered elastic anisotropic shells’,Izv. Akad. Nauk. SSSR, Mekh. Tverd. Tela,12(5) (1977) 87–96 [Engl. transl.Mech. Solids,12(5) 73–81].

    Google Scholar 

  29. Rasskazov, A.O., Sokolovskaya, I.I. and Shul'ga, N.A., ‘Comparative analysis of several shear models in problems of equilibrium and vibrations for multilayer plates’,Prik. Mekh.,19(7) (1983) 84–90 [Engl. transl.Sov. Appl. Mech.,19(7) 633–638].

    Google Scholar 

  30. Noor, A.K., Burton, W.S. and Peters, J.M., ‘Predictor-corrector procedures for stress and free vibration analyses of multiayered composite plates and shells’,Comput. Meth. Appl. Mech. Engng,82 (1990) 341–363.

    Google Scholar 

  31. Srinivas, S., ‘A refined analysis of composite laminates’,J. Sound Vibration,30 (1973) 495–507.

    Google Scholar 

  32. Green, A.E. and Naghdi, P.M., ‘A theory of laminated composite plates’,IMA J. Appl. Math.,29 (1982) 1–23.

    Google Scholar 

  33. Epstein, M. and Huttelmaier, H.P., ‘A finite element formulation for multilayered and thick plates’,Comput. Struct. 5 (1983) 645–650.

    Google Scholar 

  34. Reddy, J.N., ‘A generalization of two-dimensional theories of laminated composite plates’,Comm. Appl. Num. Meth.,3 (1987) 173–180.

    Google Scholar 

  35. Librescu, L., ‘Improved linear theory of elastic anisotropic multilayered shells. Part I’,Melch. Polimerov,11 (1975) 1038–1050 [Engl. transl.Polymer Mech.,11 (1975) 885–896].

    Google Scholar 

  36. Librescu, L., ‘Improved linear theory of elastic anisotropic multilayered shells. Part II’,Mech. Polimerov,12 (1976) 100–119 [Engl. transl.Polymer Mech.,12 (1976) 82–90].

    Google Scholar 

  37. Reissner, E., ‘On a mixed variational theorem and on shear deformable plate theory’,Internat. J. Num. Meth. Engng,23 (1986) 193–198.

    Google Scholar 

  38. Savoia, M., Laudiero, F. and Tralli, A., ‘A refined model for laminated composite beams’,Internat. Congress on New Developments in Structural Mechanics (1990), Catania.

  39. Bauchau, O.A., ‘A beam theory for anisotropic materials’,J. Appl. Mech. ASME,52 (1985) 416–422.

    Google Scholar 

  40. Ladevèze, P., ‘Principes de Saint-Venant en déplacement et en contrainte pour les poutres droites élastiques’,ZAMP,33 (1982) 132–139.

    Google Scholar 

  41. Ladevèze, P., ‘Sur le principe de Saint-Venant en élasticité’,J. Mech. Theor. Appl.,2 (1983) 161–184.

    Google Scholar 

  42. Rychter, Z., ‘On the shear coefficient in beam bending’,Mech. Res. Comm.,14 (1987) 379–385.

    Google Scholar 

  43. Whitney, J.M., ‘Stress analysis of thick laminated composite and sandwich plates’,J. Compos. Mater.,6 (1972) 426–440.

    Google Scholar 

  44. Whitney, J.M., ‘Shear correction factors for orthotropic laminates under static load’,J. Appl. Mech. ASME,40 (1973) 302–304.

    Google Scholar 

  45. Bert, C.W., ‘Simplified analysis of static shear factors for beams of nonhomogeneous cross section’,J. Compos. Mater.,7 (1973) 525–529.

    Google Scholar 

  46. Massonnet, C.E., ‘A new approach (including shear lag) to elementary mechanics of materials’,Internat. J. Solids Struct.,19 (1983) 33–54.

    Google Scholar 

  47. Cowper, G.R., ‘The shear coefficient in Timoshenko's beam theory’,J. Appl. Mech. ASME,33 (1966) 335–339.

    Google Scholar 

  48. Gregory, R.D. and Gladwell, I., ‘The cantilever beam under tension, bending or flexure at infinity’,J. Elasticity,12 (1982) 317–343.

    Google Scholar 

  49. Barlow, J., ‘Optimal stress location in finite element models’,Internat. J. Num. Meth. Engng,10 (1976) 243–251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savoia, M., Laudiero, F. & Tralli, A. A refined theory for laminated beams: Part I—A new high order approach. Meccanica 28, 39–51 (1993). https://doi.org/10.1007/BF00990288

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00990288

Key words

Navigation