Skip to main content
Log in

Effects of secondary metabolites from marine algae on feeding by the sea urchin,Lytechinus variegatus

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

A bioassay was developed to test the hypothesis that secondary metabolites from marine algae affect feeding by sea urchins. During experiments measuring chemoreception and gustation, feeding by the regular sea urchin,Lytechinus variegatus (Lamarck), was inhibited by extracts from the green marine alga,Caulerpa prolifera (Forsskal) Lamouroux andCymopolia barbata (Linneaus) Lamouroux. Cymopol, a monoterpene-bromohydroquinone component ofC. barbata, was partially responsible for the inhibited feeding observed in tests of theCymopolia crude extract. Caulerpenyne, an oxygenated sesquiterpene fromC. prolifera, was responsible for all of the urchin feeding inhibition observed in tests of theC. prolifera crude extract. Feeding was not affected by: (1) extracts from several otherCaulerpa species includingC. mexicana (Sonder) J. Agardh,C. ashmaedii Harvey,C. racemosa v.macrophysa (Kutzing) Taylor, andC. racemosa v.laetevirens (Montagne) Weber-van Bosse; (2) caulerpin, an indole-containing pigment isolated from all of theCaulerpa species exceptC. mexicana; and (3) an extract from the red marine alga,Gracilaria foliifera v.angustissima (Harvey) Taylor, which has no known secondary metabolites. Feeding inhibition was independent of the test diameter which correlated with the reproductive state of the urchins. Feeding inhibition was also independent of the starvation periods between experiments, and the temperature and salinity in ranges tolerated byL. variegatus obtained from the Florida Gulf Coast. The data strongly suggest that at least one alga,Caulerpa prolifera, is chemically defended against a dominant omnivore in its community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amico, V., Oriente, G., Piatelli, M., Trigali, C., Fattorusso, E., Magno, S., andMayol, L. 1978. Caulerpenyne, an unusual sesquiterpenoid from the green algaCaulerpa prolifera.Tetrahedron Lett. 1978:3593–3596.

    Google Scholar 

  • Ayling, A.L. 1978. The relation of food availability and food preferences to the field diet of an echinoidEvechinus chloroticus (Valenciennes).J. Exp. Mar. Biol. Ecol. 33:223–235.

    Google Scholar 

  • Bach, S.D., 1979. Standing crop, growth and production of calcareous siphonales (Chlorophyta) in a south Florida lagoon.Bull. Mar. Sci. 29:191–201.

    Google Scholar 

  • Barkman, J.J., 1955. On the distribution and ecology ofLittorina obtusata (L.).Arch. Neerl. Zool. 11:22–86.

    Google Scholar 

  • Barnard, E. A., 1973. Comparative biochemistry and physiology of digestion. III. biochemical adaptations to diet, pp. 147–152,in C.L. Prosser (ed.). Comparative Animal Physiology. W.B. Saunders, Philadelphia.

    Google Scholar 

  • Camp, D.K., Cobb, S.P., andVan Breedveld, J.F. 1973. Overgrazing of seagrasses by a regular urchin,Lytechinus variegatus.Bio Sci. 23:37–38.

    Google Scholar 

  • Carefoot, T.H., 1967. Growth and nutrition ofAplysia punctata feeding on a variety of marine algae.J. Mar. Biol. Assoc. U.K. 47:565–589.

    Google Scholar 

  • Crews, P., andKho, E. 1975. Plocamene B, a new cyclic monoterpene skeleton from a red marine alga.J. Org. Chem. 40:2568–2570.

    Google Scholar 

  • Dawes, C.J. 1974. Marine Algae of the West Coast of Florida. University of Miami Press, Coral Gables, Florida, 201 pp.

    Google Scholar 

  • Dawes, C.J., Earle, S.A., andCroley, F.C. 1967. The offshore benthic flora of the southwest coast of Florida.Bull. Mar. Sci. 17:211–231.

    Google Scholar 

  • Dieter, R.K., Kinnel, R., Meinwald, J., andEisner, T. 1979. Brasudol and isobrasudol: Two bromosesquiterpenes from a sea hare (Aplysia brasiliana).Tetrahedron Lett. 1979:1645–1648.

    Google Scholar 

  • Geiselman, J.A. 1980. Ecology of chemical defenses of algae against the herbivorous snail,Littorina littorea, in the New England rocky intertidal community. PhD dissertation, Massachusetts Institute of Technology/Woods Hole Oceanographie Institution, 209 pp.

  • Geiselman, J.A., andMcConnell, O.J. 1981. Polyphenols in the brown AlgaeFucus vesiculosus andAscophyllum nodosum: Chemical defenses against the marine herbivorous snail,Littorina littorea.J. Chem. Ecol. 7:1115–1133.

    Google Scholar 

  • Gerwick, W. H., andFenical, W. 1981. Ichthyotoxic and cytotoxic metabolites of the tropical brown algaStypopodium zonale (Lamouroux) Papenfuss.J. Org. Chem. 46:22–27.

    Google Scholar 

  • Gerwick, W.H., Fenical, W., Fritsch, N., andClardy, J. 1979. Stypotriol and stypoldione; ichthyotoxins of mixed biogenesis from the marine algaStypopodium zonale.Tetrahedron Lett. 1979:145–148.

    Google Scholar 

  • Gilmore, R.G., andGore, R.H. 1974. Observation on a sea urchin capturing a juvenile mullet.Fla. Sci. 37:52–56.

    Google Scholar 

  • Greenway, M. 1976. The grazing ofThalassia testudinum in Kingston Harbour, Jamaica.Aquat. Bot. 2:117–126.

    Google Scholar 

  • Hamm, D., andHumm, H.J. 1976. Benthic algae of the Anclote estuary II. Bottom-dwelling species.Fla. Sci. 39:209–229.

    Google Scholar 

  • Hogberg, H.E., Thompson, R.H., andKing, T.J. 1976. The cymopols, a group of prenylated bromo-hydroquinones from the green calcareous algaCymopolia barbota.J. Chem. Soc. Perkin I, 1976:1696–1701.

    Google Scholar 

  • Humm, H.J. 1964. Epiphytes of the sea grass,Thalassia testudinum in Florida.Bull. Mar. Sci. 14:306–341.

    Google Scholar 

  • Keller, B.D. 1976. Sea urchin abundance patterns in the seagrass meadows. The effects of predation and competitive interactions. PhD thesis, Johns Hopkins University, 39 pp.

  • Kier, P.M. andGrant, R.E. 1965. Echinoid distribution and habits, Key Largo Coral Reef Preserve, Florida.Smithson. Misc. Collect. 149:68 pp.

    Google Scholar 

  • Lapointe, B.E. 1981. The effects of light and nitrogen on growth, pigment content and biochemical composition ofGracilariafoliifera v.angustissima (Gigortinales, Rhodophyta).J. Phycol. 17:90–95.

    Google Scholar 

  • Lapointe, B.E., andTenore, K.R. 1981. Experimental outdoor studies withUlva fasciata I. interaction of light and nitrogen on growth and biochemical composition.J. Exp. Mar. Biol. Ecol. 53:135–152.

    Google Scholar 

  • Larson, B.R., Vadas, R.L., andKeser, M. 1980. Feeding and nutritional ecology of the sea urchinStronglylocentrotus drobachiensis in Maine, U.S.A.Mar. Biol. 59:49–62.

    Google Scholar 

  • Lawrence, J.M. 1975a. On the relationships between marine plants and sea urchins.Oceanogr. Mar. Biol. Annu. Rev. 13:213–286.

    Google Scholar 

  • Lawrence, J.M. 1975b. The effect of temperature-salinity combination on the functional well-being of adultLytechinus variegatus (Lamarck) (Echinodermata, Echinoidea).J. Exp. Mar. Biol. Ecol. 18:271–275.

    Google Scholar 

  • Leighton, D.L. 1966. Studies of food preference in algivorous invertebrates of southern California kelp beds.Pac. Sci. 20:104–114.

    Google Scholar 

  • Leighton, D.L. 1968. A comparative study of food selection and nutrition in the abalone,Haliotis rufescens Swainson and the sea urchin,Stronglyocentrotus purpuratus Stimpson. PhD dissertation, University of California, San Diego, 197 pp.

    Google Scholar 

  • Lowe, E.F. 1974. Absorption efficiencies, feeding rates and food preferences ofLytechinus variegatus (Echinodermata: Echinoidea) for selected marine plants. MSc thesis, University of South Florida, Tampa, 97 pp.

    Google Scholar 

  • Lowe, E.F., andLawrence, J.M. 1976. Absorption efficiencies ofLytechinus variegatus (Lamarck) (Echinodermata: Echinoidea) for selected marine plants.J. Exp. Mar. Biol. Ecol. 21:223–234.

    Google Scholar 

  • Maiti, B.C.,Thompson, R.H., andMahendran, M. 1978. The structure of caulerpin, a pigment fromCaulerpa algae.J. Chem. Res. (s), pp. 126–127 and (m), p. 1683.

  • McConnell, O. J.,Hughes, P.A., andTargett, N.M. 1982. Diastereomersof cyclocymopoland cyclocymopol monomethyl ether fromCymopolia barbota. Phytochemistry In Press.

  • Moore, H.B., andMcPherson, B.F. 1965. Acontribution to the study ofthe productivity of the urchinsTripneustes esculatus andLytechinus variegatus.Bull. Mar. Sci. 15:885–871.

    Google Scholar 

  • Moore, H.B., Jutare, T., Bauer, J.L., andJones, J.A. 1963. The biology ofLytechinus variegatus.Bull. Mar. Sci. 13:23–53.

    Google Scholar 

  • North, W.J. 1963. Kelp Habitat Improvement Project, Final Report. Univ. Calif. Inst. Mar. Res., (IMR Ref.) 63-13, 123 pp.

  • Ogden, J.C. 1976. Some aspects of herbivore-plant relationships on Caribbean reefs and seagrass beds.Aquat. Bot. 2:103–116.

    Google Scholar 

  • Ogden, J.C. 1980. Faunal relationships in Caribbean seagrass beds, pp. 173–198, m R.C. Phillips and C.P. McRoy (eds.).Handbook of Seagrass Biology. STPM Press, New York.

    Google Scholar 

  • Ogden, J.C., andLobel, P.S. 1978. The role of herbivorous fishes and urchins in coral reef communities.Environ. Biol. Fish. 3:49–63.

    Google Scholar 

  • Paul, V.J., andFenical, W. 1980. Toxic acetylene-containing lipids from the red marine algaLiagora farinosa Lamouroux.Tetrahedron Lett. 1980:3327–3330.

    Google Scholar 

  • Paul, V., McConnell, O.J., andFenical, W. 1980. Cyclic monoterpenoid feeding deterrents from the red algaOchtodes crockeri.J. Org. Chem. 45:3401–3407.

    Google Scholar 

  • Schulte, G., Scheuer, P.J., andMcConnell, O.J. 1981. Two furanosesquiterpene marine metabolites with antifeedant properties.Helv. Chim. Acta. 63:2159–2167.

    Google Scholar 

  • Sharp, D.T., andGray, I.E. 1962. Studies on factors affecting the local distribution of two sea urchins,Arbacia punctata andLytechinus variegatus.Ecology 43:309–313.

    Google Scholar 

  • Shoemaker, D.P., andGarland, C.W. 1972. Experiments in Physical Chemistry. McGraw-Hill, New York, 490 pp.

    Google Scholar 

  • Sun, H.H., andFenical, W. 1979. Rhipocephalin and rhipocephenal; toxic feeding deterrents from the tropical marine algaRhipocephalus phoenix.Tetrahedron Lett. 1979:685–688.

    Google Scholar 

  • Taylor, W.R. 1960. Marine Algae of the Eastern Tropical and Subtropical Coasts of the Americas. University of Michigan Press, Ann Arbor, 870 pp.

    Google Scholar 

  • Vadas, R.L. 1977. Preferential feeding: An optimization strategy in sea urchins.Ecol. Monogr. 47:337–371.

    Google Scholar 

  • Vadas, R.L.,Fenchel, T., andOgden, J.C. 1982. Ecological studies on the sea urchin,Lytechinus variegatus, and the algal-seagrass communities of the Miskito Cays, Nicaragua.Aqual. Bot. In Press.

  • Zar, J.H. 1974. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 620 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McConnell, O.J., Hughes, P.A., Targett, N.M. et al. Effects of secondary metabolites from marine algae on feeding by the sea urchin,Lytechinus variegatus . J Chem Ecol 8, 1437–1453 (1982). https://doi.org/10.1007/BF00989101

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00989101

Key words

Navigation