Skip to main content
Log in

Ecological patterns in the glucosinolate content of a native mustard,Cardamine cordifolia, in the rocky mountains

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Insect use of native crucifers may be related to patterns in mustard oil content. Consequently, in 1979 we measured glucosinolate content of Rocky Mountain bittercress,Cardamine cordifolia (Cruciferae), using paper and gas chromatography, in relation to: plant organ, phenology, elevation, habitat, leaf position and weight, and plant consumption by two adapted insect herbivores. Results for each are as follows. (1) The predominant constituent in all vegetative organs was 2-butylglucosinolate; concentration of isothiocyanate-yielding glucosinolates (IYG) was highest in roots (1.11 mg/gfr. wt) and lowest in stems (0.07 mg/g). (2) Concentration of IYG appeared to be higher in plants lacking oxazolidinethione-yielding glucosinolates (OYG) than in those with OYG. (3) Terminal cauline leaves had a higher content of IYG than leaves in other positions on a plant. (4) Heavy leaves had significantly higher concentrations of IYG than did lighter leaves. (5) IYG concentrations were not directly related to elevation. (6) Leaves of plants occurring naturally in the sun had concentrations of IYG similar to those of plants in the usual shaded habitat. However, experimental removal of overhanging willows caused a significant, stress-induced increase in IYG concentrations. Finally, (7) feeding by two adapted herbivores, chrysomelids and psyllids, was associated with lower, rather than higher, IYG concentrations. The results demonstrate significant variation in glucosinolate content in a native crucifer and suggest that some of this variation can be partitioned in relation to the ecological and environmental axes examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Shehbaz, I.A. 1973. The biosystematics of the genusThelypodium (Cruciferae).Contrib. Gray Herb. Harv. Univ. 204:3–148.

    Google Scholar 

  • Barrell, J. 1969. Flora of the Gunnison Basin: Gunnison, Saguache and Hinsdale Counties, Colorado. Natural Lands Inst., Rockford, Ill.

    Google Scholar 

  • Blau, P.A., Feeny, P., Contardo, L., andRobson, D.S. 1978. Allylglucosinolate and herbivorous caterpillars: A contrast in toxicity and tolerance.Science 200:1296–1298.

    Google Scholar 

  • Bogawat, J.K., andSrivastava, B.K. 1968. Discovery of sinigrin as a phagostimulant byAthalia proxima Klug. (Hymenoptera: Tenthredinidae).Ind. J. Entomol. 30:89.

    Google Scholar 

  • Bonnemaison, L. 1965. Insect pests of crucifers and their control.Annu. Rev. Entomol. 10:233–256.

    Google Scholar 

  • Cates, R.G. 1975. The interface between slugs and wild ginger: Some evolutionary aspects.Ecology 56:391–400.

    Google Scholar 

  • Chew, F.S. 1975. Coevolution of pierid butterflies and their cruciferous foodplants. I. The relative quality of available resources.Oecologia (Berlin) 20:117–127.

    Google Scholar 

  • Chew, F.S. 1977. Coevolution of pierid butterflies and their cruciferous foodplants. II. The distribution of eggs on potential foodplants.Evolution 31:568–579.

    Google Scholar 

  • Cole, R. A. 1980. Volatile components produced during ontogeny of some cultivated crucifers.J. Sci. Food Agric. 31:549–557.

    Google Scholar 

  • Courtney, S.P. 1981. Coevolution of pierid butterflies and their cruciferous foodplants. III.Anthocharis cardamines (L.) survival, development and oviposition on different hostplants.Oecologia (Berlin) 51:91–96.

    Google Scholar 

  • David, W.A.L., andGardiner, B.O.C. 1966. Mustard oil glucosides as feeding stimulants forPieris brassicae larvae in a semi-synthetic diet.Entomol. Exp. Appl. 9:247–255.

    Google Scholar 

  • Dethier, V.G. 1980. Evolution of receptor sensitivity to secondary plant substances with special reference to deterrents.Am. Nat. 115:45–66.

    Google Scholar 

  • Dolinger, P.M., Ehrlich, P.R., Fitch, W.L., andBreedlove, D.E. 1973. Alkaloid and predation patterns in Colorado lupine populations.Oecologia (Berlin) 13:191–204.

    Google Scholar 

  • Ehrlich, P. R., andRaven, P.H. 1965. Butterflies and plants: A study in Coevolution.Evolution 18:586–608.

    Google Scholar 

  • Van Emden, H.F. 1972. Aphids as phytochemists, pp. 25–43,in J.B. Harborne (ed.). Phytochemical Ecology. Academic Press, New York.

    Google Scholar 

  • Erickson, J.M., andFeeny, P.P. 1974. Sinigrin: A chemical barrier to the black swallowtail butterfly,Papilio polyxenes. Ecology 55:103–111.

    Google Scholar 

  • Ettlinger, M.G., andKjaer, A. 1968. Sulfur compounds in plants.Rec. Adv. Phytochem. 1:59–144.

    Google Scholar 

  • Ettlinger, M.G., Kjaer, A., Thompson, C.P., andWagnières, M. 1966. Veratryl iso-thiocyanate, a new mustard oil fromHeliophila longifolia DC. (Cruciferae).Acta Chem. Scand. 20:1778–1782.

    PubMed  Google Scholar 

  • Ettlinger, M.G., andThompson, C. P. 1962. Studies of mustard oil glucosides (II). Final Report Contact DA-19-129-QM1689, U.S. Dept. Commerce AD-290 747.

  • Feeny, P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars.Ecology 51:565–581.

    Google Scholar 

  • Feeny, P. 1975. Biochemical coevolution between plants and their insect herbivores, pp. 3–19,in L. Gilbert and P. Raven (eds.). Coevolution of Animals and Plants. University of Texas Press, Austin.

    Google Scholar 

  • Feeny, P. 1976. Plant apparency and chemical defense.Rec. Adv. Phytochem. 10:1–40.

    Google Scholar 

  • Feeny, P. 1977. Defensive ecology of the Cruciferae.Ann. Mo. Bot. Gard. 64:221–234.

    Google Scholar 

  • Feeny, P., andRosenberry, L. 1982. Seasonal variation in the glucosinolate content of North AmericanBrassica nigra andDentaria species.Biochem. Syst. Ecol. 10:23–32.

    Google Scholar 

  • Fraenkel, G. 1959. The raison d'etre of secondary plant substances.Science 129:1466–1470.

    PubMed  Google Scholar 

  • Gupta, P.D., andThorsteinson, A. J. 1960. Food plant relationships of the diamondback moth,Plutella maculipennis (Curt.) II. Sensory regulation of oviposition of the adult female.Entomol. Exp. Appl. 3:305–314.

    Google Scholar 

  • Handel, S.N. 1976. Population ecology of three woodlandCarex species. PhD thesis, Cornell University, Ithaca, New York.

    Google Scholar 

  • Hare, J.D. 1980. Variation in fruit size and susceptibility to seed predation among and within populations of the cocklebur,Xanthium strumarium L.Oecologia 46:217–222.

    Google Scholar 

  • Hare, J.D., andFutuyma, D.J. 1978. Different effects of variation inXanthium strumarium L. (Compositae) on two insect seed predators.Oecologia (Berlin) 37:109–120.

    Google Scholar 

  • Harrington, H.D. 1954. Manual of the Plants of Colorado. Sage Books, Denver, Colorado.

    Google Scholar 

  • Hawkes, C., andCoaker, T.H. 1979. Factors affecting the behavioural responses of the adult cabbage root fly,Delia brassicae, to host plant odour.Enlomol. Exp. Appl. 25:45–58.

    Google Scholar 

  • Hicks, K.L. 1974. Mustard oil glucosides: Feeding stimulants for adult cabbage flea beetles,Phyllotreta cruciferae (Coleoptera: Chrysomelidae).Ann. Entomol, Soc. Am. 67:261–264.

    Google Scholar 

  • Janzen, D.H. 1968. Host plants as islands in evolutionary and contemporary time.Am. Nat. 102:592–595.

    Google Scholar 

  • Janzen, D.H. 1979. New horizons in the biology of plant defenses, pp. 331–350,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores: Their Interaction with Secondary Plant Metabolities. Academic Press, New York.

    Google Scholar 

  • Josefsson, E. 1967a. Distribution of thioglucosides in different parts ofBrassica plants.Phytochemistry 6:1617–1627.

    Google Scholar 

  • Josefsson, E. 1967b. Content of rhodanidogenic glucosides in someBrassica crops.J. Sci. Food Agric. 18:492–495.

    PubMed  Google Scholar 

  • Josefsson, E. 1970. Pattern, Content, and Biosynthesis of Glucosinolates in Some Cultivated Cruciferae. Swedish Seed Assocation, Svalöf, Sweden.

    Google Scholar 

  • Josefsson, E. 1971. Studies of the biochemical background to differences in glucosinolate content inBrassica napus L. II. Administration of some sulphur-35 and carbon-14 compounds and localization of metabolic blocks.Physiol Plant. 24:101–175.

    Google Scholar 

  • Ju, H., Chong, C., Bible, B.B., andMullin, W.J. 1980. Seasonal variation in glucosinolate composition of rutabaga and turnip.Can. J. Plant Sci. 60:1295–1302.

    Google Scholar 

  • Kjaer, A. 1960. Naturally derived isøthiocyanates (mustard oils) and their parent glucosides.Fortschr. Chem. Org. Naturst 18:122–176.

    Google Scholar 

  • Kjaer, A. 1976. Glucosinolates in the Cruciferae, pp. 207–220,in J.G. Vaughan, A.J. MacLeod and B.M.G. Jones (eds.). The Biology and Chemistry of the Cruciferae. Academic Press, London.

    Google Scholar 

  • Levin, D.A. 1976. The chemical defenses of plants to pathogens and herbivores.Annu. Rev. Ecol. Syst. 7:121–159.

    Google Scholar 

  • Lewis, A.C. 1979. Feeding preference for diseased and wilted sunflower in the grasshopper,Melanoplus differentialis. Entomol. Exp. Appl. 26:202–207.

    Google Scholar 

  • Lichtenstein, E.P., Strong, F.M., andMorgan, D.G. 1962. Identification of 2-phenyl-ethylisothiocyanate as an insecticide occurring naturally in the edible part of turnips.J. Agr. Food Chem. 10:30–33.

    Google Scholar 

  • Louda, S.M. 1978. A test of predispersal seed predation in the population dynamics ofHaplopappus (Asteraceae). PhD thesis, University of California, Riverside, and San Diego State University.

    Google Scholar 

  • Louda, S.M., 1982. Distribution ecology: Variation in plant dynamics over a gradient in relation to insect seed predation.Ecol. Monogr. 52(1):25–41.

    Google Scholar 

  • Louda, S.M. 1983a. Seed predation and seedling mortality in the recruitment of a shrub.Haplopappus venetus Blake (Asteraceae), along a climatic gradient.Ecology 64(2): in press.

  • Louda, S.M. 1983b. Experimental assessment of herbivory by a chrysomelid beetle in the growth and seed production of a native crucifer. Submitted toEcology.

  • Lauda, S.M. 1983c. Differential herbivory onCardamine cordifolia (Cruciferae) between adjacent sun and shade habitats: An experimental test of proximal mechanisms. Submitted toEcol. Monogr.

  • Lubchenco, J., andGaines, S.D. 1981. A unified approach to marine plant-herbivore interactions. I. Populations and communities.Annu. Rev. Ecol. Syst. 12:405–437.

    Google Scholar 

  • Marsh, N., andRothschild, M. 1974. Aposematic and cryptic Lepidoptera tested on the mouse.J. Zool. 174:89–122.

    Google Scholar 

  • Matsumoto, Y. 1980. Volatile organic sulfur compounds as insect attractants with special reference to host selection, pp. 133–160, in D. L. Wood, R. M. Silverstein, and M. Nakajiana (eds.). Control of Insect Behavior by Natural Products. Academic Press, New York.

    Google Scholar 

  • McKey, D. 1979. The distribution of secondary compounds within plants, pp. 56–133,in G.A. Rosenthal and D.H. Janzen, (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • McNeill, S., andSouthwood, T.R.E. 1978. The role of nitrogen in the development of insect/plant relationships, pp. 77–98,in J.B. Harborne (ed.). Biochemical Aspects of Plant and Animal Coevolution. Academic Press, London.

    Google Scholar 

  • Mooney, H.A., andChu, C. 1974. Seasonal carbon allocation inHeteromeles arbutifolia, a California evergreen shrub.Oecologia (Berlin) 14:295–306.

    Google Scholar 

  • Moore, L.R. 1978a. Seed predation in the legumeCrotalaria. I. Intensity and variability of seed predation in native and introduced populations ofC. pallida Ait.Oecologia (Berlin) 34:185–202.

    Google Scholar 

  • Moore, L.R. 1978b. Seed predation in the legumeCrotalaria. II. Correlates of interplant variability in predation intensity.Oecologia (Berlin) 34:203–223.

    Google Scholar 

  • Nair, K.S.S., andMcEwen, F.L. 1976. Host selection by the adult cabbage maggot,Hylemya brassicae (Diptera: Anthomyiidae): Effect of glucosinolates and common nutrients on oviposition.Can. Entomol. 108:1021–1030.

    Google Scholar 

  • Nair, K.S.S., McEwen, F.L., andSnieckus, V. 1976. The relationship between glucosinolate content of cruciferous plants and oviposition preferences ofHylemya brassicae (Diptera: Anthomyiidae).Can. Entomol. 108:1031–1036.

    Google Scholar 

  • Namai, H., andHosoda, T. 1975. Interspecific and intervarietal variations in content of volatile isothiocyanate in seed meals of cruciferous crops.Jpn. J. Gen. 50:43–51.

    Google Scholar 

  • Nayar, J.K. andThorsteinson, A.J. 1963. Further investigations into the chemical basis of insect-host plant relationships in the oligophagous insect,Plutella maculipennis (Curtis) (Lepidoptera: Plutellidae).Can. J. Zool. 41:923–929.

    Google Scholar 

  • Nielsen, J.K. 1977. Host-plant relationships ofPhyllotreta nemorum L. (Coleoptera: Chrysomelidae). I. Field studies.J. Angew. Entomol. 84:396–407.

    Google Scholar 

  • Nielsen, J.K. 1978. Host plant discrimination within Cruciferae: Feeding responses of four leaf beetles (Coleoptera: Chrysomelidae) to glucosinolates, cucurbitacins and cardenolides.Entomol. Exp. Appl. 24:41–54.

    Google Scholar 

  • Rhoades, D.F., andCates, R.G. 1976. Toward a general theory of plant antiherbivore chemistry.Rec. Adv. Phytochem. 10:168–213.

    Google Scholar 

  • Rochow, T.F. 1970. Ecological investigations ofThlaspi alpestre L. along an elevational gradient in the central Rocky Mountains.Ecology 51:649–659.

    Google Scholar 

  • Rodman, J.E. 1974. Systematics and evolution of the genusCakile (Cruciferae).Contrib. Gray Herb. Harv. Univ. 205:3–146.

    Google Scholar 

  • Rodman, J.E. 1976. Differentiation and migration ofCakile (Cruciferae): Seed glucosinolate evidence.Syst. Bot. 1:137–148.

    Google Scholar 

  • Rodman, J.E. 1978. Glucosinolates: Methods of analysis and some chemosystematic problems.Phytochem. Bull. 11:6–31.

    Google Scholar 

  • Rodman, J.E. 1980. Population variation and hybridization in sea-rockets (Cakile, Cruciferae): Seed glucosinolate characters.Am. J. Bot. 67:1145–1159.

    Google Scholar 

  • Rodman, J.E. 1981. Divergence, convergence, and parallelism in phytochemical characters: The glucosinolate-myrosinase system, pp. 43–70,in D.A. Young and D.S. Seigler (eds.). Phytochemistry and Angiosperm Phylogeny. Praeger Publishers, New York.

    Google Scholar 

  • Rodman, J.E., andChew, F.S. 1980. Phytochemical correlates of herbivory in a community of native and naturalized Cruciferae.Biochem. Syst. Ecol. 8:43–50.

    Google Scholar 

  • Rodman, J.E., Kruckeberg, A.R., andAl-Shehbaz, I.A. 1981. Chemotaxonomic diversity and complexity in seed glucosinolates ofCaulanthus andStreptanthus (Cruciferae).Syst. Bot. 6:197–222.

    Google Scholar 

  • Root, R.B. 1973. Organization of a plant-arthropod association in simple and diverse habitats: The fauna of collards (Brassica oleracea).Ecol. Monogr. 43:95–124.

    Google Scholar 

  • Rosenthal, G.A., andJanzen, D.H. (eds.). 1979. Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Schoonhoven, L.M. 1967. Chemoreception of mustard oil glucosides in larvae ofPieris brassicae. Proc. R. Acad. Sci. (Amsterdam) 70C:556–568.

    Google Scholar 

  • Schoonhoven, L.M. 1969. Gustation and foodplant selection in some lepidopterous larvae.Entomol. Exp. Appl. 12:555–564.

    Google Scholar 

  • Schoonhoven, L.M. 1972. Secondary plant substances and insects.Rec. Adv. Phytochem. 5:197–224.

    Google Scholar 

  • Seigler, D.S. 1977. Primary roles for secondary compounds.Biochem. Syst. Ecol. 5:195–199.

    Google Scholar 

  • Slansky, F. 1974. Energetic and nutritional interactions between larvae of the imported cabbage butterfly,Pieris rapae L., and cruciferous food plants. PhD thesis, Cornell University, Ithaca, New York.

    Google Scholar 

  • Slansky, F., andFeeny, P. 1977. Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants.Ecol. Monogr. 47:209–228.

    Google Scholar 

  • Swain, T. 1977. Secondary compounds as protective agents.Annu. Rev. Plant Physiol. 28:479–501.

    Google Scholar 

  • Thorsteinson, A.J. 1953. The chemotactic responses that determine host specificity in an oligophagous insect (Plutella maculipennis (Curt), Lepidoptera).Can. J. Zool. 31:52–72.

    Google Scholar 

  • Underbill, E.W., andD.F. Kirkland. 1972. L-2-Amino-4-phenylbutyric acid and 2-phenyl-ethylglucosinolate, precursors of 2-hydroxy-2-phenylethylglucosinolate.Phylochemistry 11:1973–1979.

    Google Scholar 

  • Underbill, E.W., Wetter, L.R., andChisholm, M.D. 1973. Biosynthesis of glucosinolates.Biochem. Soc. Symp. 38:303–326.

    Google Scholar 

  • Van Etten, C.H., andTookey, H.L. 1978. Glucosinolates in cruciferous plants, pp. 507–520,in R.F. Keeler, K.R. Van Kampen, and L.F. James (eds.). Effects of Poisonous Plants on Livestock. Academic Press, New York.

    Google Scholar 

  • Van Etten, C.H., andTookey, H.L. 1979. Chemistry and biological effects of glucosinolates, pp. 471–501,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • White, T.C.R. 1969. An index to measure weather-induced stress of trees associated with outbreaks of psyllids in Australia.Ecology 50:905–909.

    Google Scholar 

  • White, T.C.R. 1974. A hypothesis to explain outbreaks of looper caterpillars, with special reference to populations ofSelidosema sauvis in a plantation ofPinus radiata in New Zealand.Oecologia (Berlin) 16:279–301.

    Google Scholar 

  • White, T.C.R. 1976. Weather, food and plagues of locusts.Oecologia (Berlin) 22:119–134.

    Google Scholar 

  • White, T. C. R. 1978. The importance of a relative shortage of food in animal ecology.Oecologia (Berlin) 33:71–86.

    Google Scholar 

  • Whittaker, R.H., andFeeny, P. 1971. Allelochemics: chemical interactions between species.Science 171:757–770.

    PubMed  Google Scholar 

  • Wieczorek, H. 1976. The glycoside receptor of the larvae ofMamestra brassicae L. (Lepidoptera, Noctuidae).J. Comp. Physiol. Ser. A 106:153–176.

    Google Scholar 

  • Woodhead, S. 1981. Environmental and biotic factors affecting phenolic content of different cultivars ofSorghum bicolor.J. Chem. Ecol. 7:1035–1048.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louda, S.M., Rodman, J.E. Ecological patterns in the glucosinolate content of a native mustard,Cardamine cordifolia, in the rocky mountains. J Chem Ecol 9, 397–422 (1983). https://doi.org/10.1007/BF00988458

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00988458

Key words

Navigation