Skip to main content
Log in

Impact of acidic deposition onEncelia farinosa gray (Compositae: Asteraceae) and feeding preferences ofTrirhabda geminata horn (Coleoptera: Chrysomelidae)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Container grownEncelia farinosa were exposed to three 3-hr episodes of acidic fog (pH 2.5) typical of events in southern California. Adults and larvae of the specialist leaf-feeding herbivore,Trirhabda geminata, preferred to feed on the acidic-treated foliage compared to control fogged (pH 6.3–6.5) foliage. Previous feeding damage on the plants did not affect feeding preference. The acidic-fogged foliage was significantly higher in total nitrogen and soluble protein but not different from control-treated tissue in water content. Stress on native populations of this drought-deciduous shrub caused by atmospheric pollutants may also result in altered feeding ecology of the beetle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes, O.L. 1963. Food-plant tests with the differential grasshopper.J. Econ. Entomol. 56:396–399.

    Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein binding.Anal. Biochem. 72:248–254.

    PubMed  Google Scholar 

  • Coleman, J.S., andJones, C.G. 1988. Plant stress and insect performance: Cottonwood, ozone and a leaf beetle.Oecologia 76:57–61.

    Google Scholar 

  • Dercks, W., Trumble, J.T., andWinter, C. 1990. Impact of atmospheric pollution on linear furanocoumarin content in celery.J. Chem. Ecol. 16:443–454.

    Google Scholar 

  • Endress, A.G., andPost, S.L. 1985. Altered feeding preference of Mexican bean beetle,Epilachna varivestis, for ozonated soybean foliage.Environ. Pollut. 39:9–16.

    Google Scholar 

  • Granett, A.L., andMusselman, R.C. 1984. Simulated acidic fog injures lettuce.Atmos. Environ. 18:887–890.

    Google Scholar 

  • Hoffman, M.R. 1984. Comment on acidic fog.Environ. Sci. Technol. 18:61–64.

    Google Scholar 

  • Hughes, P.R., Potter, J.E., andWeinstein, L.H. 1982. Effects of air pollution on plant-insect interactions: Reactions of the Mexican bean beetle to sulfur dioxide fumigated pinto beans.J. Environ. Qual. 2:365–368.

    Google Scholar 

  • Jermy, T., Hanson, F.E., andDethier, V.G. 1968. Induction of specific food preference in lepidopterous larvae.Entomol. Exp. Appl. 11:211–230.

    Google Scholar 

  • Johnson, A.H., andSiccama, T.G. 1983. Acid deposition and forest decline.Environ. Sci. Technol. 17:299–304.

    Google Scholar 

  • Jones, C.G., andColeman, J.S. 1988a. Plant stress and insect behavior: Cottonwood, ozone and the feeding and oviposition preference of a beetle.Oecologia 76:51–56.

    Google Scholar 

  • Jones, C.G., andColeman, J.S. 1988b. Leaf disk size and insect feeding preference: Implications for assays and studies on induction of plant defenses.Environ. Exp. Appl. 47:167–172.

    Google Scholar 

  • Jones, C.G., Hare, J.D., andCompton, S.J. 1988. Measuring plant protein with the Bradford assay: I. Evaluation and a standard method.J. Chem. Ecol. 15:979–992.

    Google Scholar 

  • McCool, P.M., Musselman, R.C., andSterrett, J.L. 1990. Injury of three flower crops from simulated acidic fog.Plant Dis. 74:310–312.

    Google Scholar 

  • McKenzie, H.A., andWallace, H.S. 1954. The Kjeldahl determination of nitrogen: A critical study of digestion conditions, temperature, catalyst, and oxidizing agent.Aust. J. Chem. 7:55–70.

    Google Scholar 

  • Munz, P.A., andKeck, D.D. 1968. A California Flora and Supplement. University of California Press, Los Angeles.

    Google Scholar 

  • Musselman, R.C., andMcCool, P.M. 1989. Effects of acidic fog on productivity of celery and lettuce and impact on incidence and severity of diseases.Ann. Appl. Biol. 114:559–565.

    Google Scholar 

  • Musselman, R.C., Sterrett, J.L., andGranett, A.L. 1985. A portable fogging apparatus for field or greenhouse use.HortScience 20:1127–1129.

    Google Scholar 

  • Risch, S.J. 1985. Effects of induced chemical changes on interpretation of feeding preference trials.Entomol. Exp. Appl. 39:81–84.

    Google Scholar 

  • SASInstitute. 1988. SAS User's Guide: Statistics. SAS Institute, Cary, North Carolina.

    Google Scholar 

  • Shreve, F., andWiggins, I.L. 1964. Vegetation and Flora of the Sonoran Desert. Stanford University Press, Stanford, California.

    Google Scholar 

  • Sokal, R.R., andRohlf, F.J. 1981. Biometry, 2nd ed. Freeman and Co., New York.

    Google Scholar 

  • Takemoto, B.K., Bytnerowicz, A., andOlszyk, D.M. 1988a. Depression of photosynthesis, growth, and yield in field-grown green pepper (Capsicum annuum L.) exposed to acidic fog and ambient ozone.Plant Physiol. 88:477–482.

    Google Scholar 

  • Takemoto, B.K., Olszyk, D.M., Johnson, A.G., andParada, C.R. 1988b. Yield responses of field-grown crops to acidic fog and ambient ozone.J. Environ. Qual. 17:192–197.

    Google Scholar 

  • Trumble, J.T., andHare, J.D. 1989. Acidic fog-induced changes in host-plant suitability.J. Chem. Ecol. 15:2379–2390.

    Google Scholar 

  • Trumble, J.T., andWalker, G.P. 1991. Acute effects of acidic fog on photosynthetic activity and morphology ofPhaseolus lunatus.HortScience 20:1531–1534.

    Google Scholar 

  • Waldman, J.M., Munger, J.W., Jacob, D.J., Flagen, R.C., Morgan, J.J., andHoffman, M.R. 1982. Chemical composition of acid fog.Science 218:677–680.

    Google Scholar 

  • Wisdom, C.S. 1985. Use of chemical variation and predation as plant defenses byEncelia farinosa against a specialist herbivore.J. Chem. Ecol. 11:1553–1565.

    Google Scholar 

  • Wisdom, C.S. 1988. Comparisons of insect use and chemical defense patterns of two Sonoran desert shrubs, pp. 36–49,in R.G. Zahary (ed.). Desert Ecology 1986: A Research Symposium. Southern California Academy of Sciences and the Southern California Desert Studies Consortium.

  • Wisdom, C.S., andRodriguez, E. 1982. Quantitative variation of the sesquiterpene lactones and chromenes ofEncelia farinosa.Biochem. Syst. Ecol. 10:43–48.

    Google Scholar 

  • Wisdom, C.S., andRodriguez, E. 1983. Seasonal age-specific measurements of the sesquiterpene lactones and chromenes ofEncelia farinosa.Biochem. Syst. Ecol. 11:345–352.

    Google Scholar 

  • Yoshida, H.A., andParrella, M.P. 1991. Chrysanthemum cultivar preferences exhibited bySpodoptera exigua (Lepidoptera: Noctuidae).Environ. Entomol. 20:160–165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paine, T.D., Redak, R.A. & Trumble, J.T. Impact of acidic deposition onEncelia farinosa gray (Compositae: Asteraceae) and feeding preferences ofTrirhabda geminata horn (Coleoptera: Chrysomelidae). J Chem Ecol 19, 97–105 (1993). https://doi.org/10.1007/BF00987475

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00987475

Key Words

Navigation