Skip to main content
Log in

Peptide-chain elongation in eukaryotes

  • Special Issue: Protein Synthesis
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The elongation phase of translation leads to the decoding of the mRNA and the synthesis of the corresponding polypeptide chain. In most eukaryotes, two distinct protein elongation factors (eEF-1 and eEF-2) are required for elongation. Each is active as a complex with GTP. eEF-1 is a multimer and mediates the binding of the cognate aminoacyl-tRNA to the ribosome, while eEF-2, a monomer, catalyses the movement of the ribosome relative to the mRNA. Recent work showing that bacterial ribosomes possess three sites for tRNA binding and that during elongation tRNAs may occupy ‘hybrid’ sites is incorporated into a model of eukaryotic elongation. In fungi, elongation also requires a third factor, eEF-3. A number of mechanisms exist to promote the accuracy or ‘fidelity’ of elongation: eEF-3 may play a role here. cDNAs for this and the other elongation factors have been cloned and sequenced, and the structural and functional properties of the elongation factors are discussed. eEF-1 and eEF-2 can be regulated by phosphorylation, and this may serve to control rates of elongationin vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

eEF:

eukaryotic elongation factor-

PKC:

protein kinase C

References

  1. Giegé R, Puglisi JD & Florentz C (1993) Prog. Nucleic Acids Res. and Mol. Biol. 45: 129–206

    Google Scholar 

  2. Schulman LH (1991) Prog. Nucleic Acids Res. and Mol. Biol. 41: 23–87

    Google Scholar 

  3. Böck A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B & Zinoni F (1991) Mol. Microbiol. 5: 515–520

    PubMed  Google Scholar 

  4. Riis B, Rattan SIS, Clark BFC & Merrick WC (1990) Trends Biochem. Sci. 15: 420–424

    PubMed  Google Scholar 

  5. Belfield GP & Tuite MF (1993) Mol. Microbiol. 9: 411–418

    PubMed  Google Scholar 

  6. Slobin LJ & Möller W (1975) Nature 258: 452–454

    PubMed  Google Scholar 

  7. Weissbach H, Redfield B & Moon H-M (1973) Arch. Biochem. Biophys. 156: 267–275

    PubMed  Google Scholar 

  8. Crechet J-B & Parmeggiani A (1986) Eur. J. Biochem. 161: 655–660

    PubMed  Google Scholar 

  9. Janssen GMC & Möller W (1988) J. Biol. Chem. 263: 1773–1778

    PubMed  Google Scholar 

  10. Van Damme H, Amons R, Karssies R, Timmers CJ, Janssen GMC & Möller W (1990) Biochim. Biophys. Acta 1050: 241–247

    PubMed  Google Scholar 

  11. Cormier P, Osborne HB, Morales J, Bassez T, Minella O, Poulhe R, Bellé R & Mulner-Lorillon O (1993) Nucleic Acids Res. 21: 743

    PubMed  Google Scholar 

  12. Van Damme H, Amons R, Janssen G & Möller W (1991) Eur. J. Biochem. 197: 505–511

    PubMed  Google Scholar 

  13. Sanders J, Raggiaschi R, Morales J & Möller W (1993) Biochim. Biophys. Acta 1174: 87–90

    PubMed  Google Scholar 

  14. Hiraga K, Suzuki K, Tsuchiya E & Miyakawa T (1993) FEBS Lett. 316: 165–169

    PubMed  Google Scholar 

  15. Venema RC, Peters HI & Traugh JA (1991) J. Biol. Chem. 266: 11993–11998

    PubMed  Google Scholar 

  16. Venema RC, Peters HI & Traugh JA (1991) J. Biol. Chem. 266: 12574–12580

    PubMed  Google Scholar 

  17. Janssen GMC, Maessen GDF, Amons R & Möller W (1988) J. Biol. Chem. 263: 11063–11066

    PubMed  Google Scholar 

  18. Cavallius J, Zoll W, Chakraburtty K & Merrick WC (1993) Biochim. Biophys. Acta 1163: 75–80

    PubMed  Google Scholar 

  19. Weijland A, Harmark K, Cool RH, Anborgh PH & Parmeggiani A (1992) Mol. Microbiol. 6: 683–688

    PubMed  Google Scholar 

  20. Weijland A & Parmeggiani A (1993) Science 259: 1311–1314

    PubMed  Google Scholar 

  21. Song JM, Picologlou S, Grant CM, Firoozan M, Tuite MF & Liebman S (1989) Mol. Cell. Biol. 9: 4571–4575

    PubMed  Google Scholar 

  22. Shepherd JCW, Walldorf U, Hug P & Gehring WJ (1989) Proc. Natl. Acad. Sci. USA 86: 7520–7521

    PubMed  Google Scholar 

  23. Cavallius J, Rattan SIS & Clark BFC (1986) Exp. Gerontol. 21: 149–157

    PubMed  Google Scholar 

  24. Tatsuka M, Mitsui H, Wada M, Nagata A, Nojima H & Okayama H (1992) Nature 359: 333–336

    PubMed  Google Scholar 

  25. Rao MN & Slobin LI (1986) Mol. Cell. Biol. 7: 687–697

    Google Scholar 

  26. Thomas G & Thomas G (1986) J. Cell Biol. 103: 2137–2144

    PubMed  Google Scholar 

  27. Slobin LI & Rao MN (1993) Eur. J. Biochem. 213: 919–926

    PubMed  Google Scholar 

  28. Taniguchi S, Miyamoto S, Sadano H & Kobayashi H (1991) Nucleic Acids Res. 19: 6949

    PubMed  Google Scholar 

  29. Deleted in proof.

  30. Riis B, Rattan SIS, Clark BFC & Merrick WC (1990) Trends Biochem. Sci. 15: 420–424

    PubMed  Google Scholar 

  31. Nygård O & Nilsson L (1989) Eur. J. Biochem. 179: 603–608

    PubMed  Google Scholar 

  32. Corquet F, Lavergne J-P, Paleologue A, Reboud J-P & Reboud A-M (1987) Eur. J. Biochem. 163: 15–20

    PubMed  Google Scholar 

  33. Nygård O & Nilsson L (1990a) Eur. J. Biochem. 191: 1–17

    PubMed  Google Scholar 

  34. Tanaka M, Iwasaki K & Kaziro Y (1977) J. Biochem. 82: 1035–1043

    PubMed  Google Scholar 

  35. Phan LD, Parentesis JP & Bodley JW (1993) J. Biol. Chem. 268: 8665–8668

    PubMed  Google Scholar 

  36. Nygård O & Nilsson L (1990) J. Biol. Chem. 265: 6030–6034

    PubMed  Google Scholar 

  37. Marzouki A, Sontag B, Lavergne JP, Vidonne C, Reboud JP & Reboud AM (1991) Biochimie 73: 1151–1156

    PubMed  Google Scholar 

  38. Price NT, Redpath NT, Severinov KV, Campbell DG, Russell R & Proud CG (1991) FEBS Lett. 282: 253–258

    PubMed  Google Scholar 

  39. Redpath NT, Price NT, Severinov KV & Proud CG (1993) Eur. J. Biochem. 213: 689–699

    PubMed  Google Scholar 

  40. Nairn AC & Palfrey HC (1987) J. Biol. Chem. 262: 17299–17303

    PubMed  Google Scholar 

  41. Ryazanov AG, Shestakova EA & Natapov PG (1988) Nature (London) 334: 170–173

    PubMed  Google Scholar 

  42. Nairn AC, Bhagat B & Palfrey HC (1985) Proc. Natl. Acad. Sci. USA 82: 7939–7943

    PubMed  Google Scholar 

  43. Redpath NT & Proud C G (1993a) Eur. J. Biochem. 212: 511–520

    PubMed  Google Scholar 

  44. Redpath NT & Proud CG (1993b) Biochem. J. 293: 31–34

    PubMed  Google Scholar 

  45. Davydova EK, Malinin NL & Ovchinnikov LP (1993) Eur. J. Biochem. 215: 291–296

    PubMed  Google Scholar 

  46. Miyazaki M, Uritani M, Kitaoka Y, Ogawa K & Kagiyama H (1990) in Post-transcriptional control of gene expression. McCarthy JEG & Tuite MF (eds.) Berlin: Springer-Verlag, pp. 557–566

    Google Scholar 

  47. Piepersberg W, Noseda V & Böck A (1979) Mol. Gen. Genet. 171: 23–34

    PubMed  Google Scholar 

  48. Colthurst DR, Belfield GP & Tuite MF (1991) Biochem. Soc. Trans. 19: 279S

  49. Skogerson L & Wakatama E (1976) Proc. Natl. Acad. Sci. USA 73: 73–76

    PubMed  Google Scholar 

  50. Qin S, Moldave K & McLaughlin CS (1986) J. Biol. Chem. 262: 7802–2807

    Google Scholar 

  51. Uritani M & Miyazaki M (1988) J. Biochem. 104: 118–126

    PubMed  Google Scholar 

  52. Traut RR & Monro RE (1964) J. Mol. Biol. 11: 35–53

    Google Scholar 

  53. Rheinberger HJ (1991) Biochimie 73: 1067–1088

    PubMed  Google Scholar 

  54. Moazed D & Noller HF (1989) Nature (London) 342: 142–148

    PubMed  Google Scholar 

  55. Hopfield JJ (1974) Proc. Natl. Acad. Sci. USA 71: 4135–4139

    PubMed  Google Scholar 

  56. Ninio J (1975) Biochimie 57: 587–595

    PubMed  Google Scholar 

  57. Robin D & Hardesty B (1983) Biochemistry 22: 5675–5679

    PubMed  Google Scholar 

  58. Rheinberger HJ, Sternbach H & Nierhaus KH (1981) Proc. Natl. Acad. Sci. USA 78: 5310–5314

    PubMed  Google Scholar 

  59. Modollel J & Davis BD (1968) Proc. Natl. Acad. Sci. USA 61: 1279–1286

    PubMed  Google Scholar 

  60. Rheinberger HJ & Nierhaus KH (1983) Proc. Natl. Acad. Sci. USA 80, 4213–4217

    PubMed  Google Scholar 

  61. Wettstein FO & Noll H (1965) J. Mol. Biol. 11: 35–53

    PubMed  Google Scholar 

  62. Rodnina MV, El'skaya AV, Semenkov YP & Kirillov SV (1988) FEBS Lett. 231: 71–74

    PubMed  Google Scholar 

  63. Merrick WC (1992) Microbiol. Rev. 56: 291–315

    PubMed  Google Scholar 

  64. Odom OW & Hardesty B (1987) Biochimie 69: 925–938

    PubMed  Google Scholar 

  65. Matzke AJM, Barta A & Kuechler E (1980) Proc. Natl. Acad. Sci. USA 77: 5110–5114

    PubMed  Google Scholar 

  66. Beletsina NV & Spirin AS (1979) Eur. J. Biochem. 94: 315–320

    PubMed  Google Scholar 

  67. Robertson JM & Wintermeyer W (1989) American Society for Microbiology Conference on Ribosomes. Abstract II-12, Montana

  68. Lill R, Robertson JM & Wintermeyer W (1984) Biochemistry 23: 6710–6717

    PubMed  Google Scholar 

  69. Holschuh K & Gassen HG (1982) J. Biol. Chem. 257: 1987–1992

    PubMed  Google Scholar 

  70. Nierhaus KH (1984) Mol. Cell. Biochem. 61: 63–81

    PubMed  Google Scholar 

  71. Pinna LA (1990) Biochim. Biophys. Acta 1054: 267–284

    PubMed  Google Scholar 

  72. Proud CG (1992) Curr. Topics Cell. Regul. 32: 243–369

    Google Scholar 

  73. Ayuso-Parrilla MS, Martin-Requero A, Perez-Diaz J & Parrilla R (1976) J. Biol. Chem. 251: 7785–7790

    PubMed  Google Scholar 

  74. Nielsen PJ & McConkey EH (1980) J. Cell. Physiol. 104: 269–281

    PubMed  Google Scholar 

  75. Hassell JA & Engelhardt DL (1976) Biochemistry 15: 1375–1381

    PubMed  Google Scholar 

  76. Fischer I, Arfin SM & Moldave K (1980) Biochemistry 19: 1417–1425

    PubMed  Google Scholar 

  77. Ramabhandran TV & Thach RE (1981) J. Virol. 39: 573–583

    PubMed  Google Scholar 

  78. Brandis JW & Raff RA (1979) Nature 278: 467–469

    PubMed  Google Scholar 

  79. Hille MB & Albers AA (1979) Nature 278: 469–471

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proud, C.G. Peptide-chain elongation in eukaryotes. Mol Biol Rep 19, 161–170 (1994). https://doi.org/10.1007/BF00986958

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00986958

Key words

Navigation