Skip to main content
Log in

Use of genetic algorithms for the design of rotors

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The problem of finding an optimum shape for rotating discs is a classical one and has received considerable attention; in the present paper an attempt to use genetic algorithms is described.

The problem of finding the constant stress profile by using genetic algorithms is tackled, firstly using the well known results of conventional methods. The problem of optimizing the shape of pierced discs is then attempted with results which are affected by strong stress concentrations, owing to simplifying assumptions in the stress analysis implicit in the so-called disc theory. This drawback is exactly the same which limits the usefulness of conventional solutions. In order to overcome this problem, particular formulations of the fitness function aimed to discourage shapes leading to strong stress concentrations are introduced, showing that profiles which lead to very favourable stress patterns when analysed using tri-dimensional methods can be obtained even with an optimization procedure essentially based on the disc theory. A profile of a disc flywheel with the rim and hub obtained using the genetic approach shows the results which can be obtained using this optimization technique.

Sommario

Il problema di ricavare il profilo ottimale per un disco rotante ha ricevuto in passato considerevole attenzione e soluzioni analitiche sono conosciute da circa un secolo. Scopo del presente lavoro è quello di illustrare un tentativo di soluzione basato sugli algoritmi genetici.

Per prima cosa è affrontato il problema della definizione del disco di uniforme resistenza, ottenendo un profilo che coincide con la ben nota soluzione descritta in letteratura. Viene poi affrontata l'ottimizzazione di dischi forati, ottenendo profili che portano a forti concentrazioni di tensione, dovute alle ipotesi semplificative usate per il calcolo dello stato di tensione, generalmente note come teoria dei dischi. Per superare questo problema, che limita peraltro l'utilità delle soluzioni classiche, sono state introdotte formulazioni delle funzioni obiettive che scoraggiano profili che portano a forti concentrazioni di tensione. Si mostra cosi come sia possibile ottenere profili che, analizzati con procedure di calcolo tridimensionale, portano a distribuzioni di tensione molto favorevoli, anche operando con procedure di ottimizzazione basate essenzialmente sulla teoria dei dischi. Un volano a disco con mozzo e corona ottenuto mediante l'approccio genetico mostra i risultati che possono essere ottenuti attraverso questa tecnica di ottimizzazione.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

e :

kinetic energy

h :

thickness at radiusr

m :

mass

r :

radial coordinate

r o :

outer radius

B :

parameter for constant stress profile

I p :

performance index

δ σ :

difference between the maximum and minimum values ofσ

ρ :

density

σ :

stress

σ c :

circumferential stress

σ e :

equivalent stress

σ r :

radial stress

χ :

nondimensional radial coordinate (χ=r/r o )

ω :

angular velocity

References

  1. Genta, G., ‘Some considerations on the constant stress disc profile’,Meccanica,24 (1989) 235–248.

    Google Scholar 

  2. De Silva, B.M.E., ‘The application of nonlinear programming to the automated minimum weight design of rotating discs’, in Fletcher, R. (Ed.),Optimization, Academic Press, New York, 1969, pp. 115–150.

    Google Scholar 

  3. Seireg, A. and Surana K.S., ‘Optimum design of rotating disks’,J. Eng. for Industry,92(1), (1970) 1–10.

    Google Scholar 

  4. Sandgren, E. and Ragsdell, K.M., ‘Optimal flywheel design with a general thickness form representation’,J. Mechanisms, Transm. and Aut. in Des., Vol. 105 (1983) 425–433.

    Google Scholar 

  5. Bhavikatti, S.S. and Ramakrishnan, C.V., ‘Optimum shape design of rotating disks’,Computers & Structures,11 (1980) 397–401.

    Google Scholar 

  6. Muscia, R., ‘La progettazione di isolatori selettivi di vibrazioni con tecniche genetiche’,XXIII Conv. Naz. AIAS, Cosenza, Sept. 1994, in press.

  7. Chapman, C.D., Saitou, K. and Jakiela M.J., ‘Genetic algorithms as an approach to configuration and topology design’,ASME Design Automation Conference, Albouquerque, Sept. 1993.

  8. Beasley, D., Bull, D.R. and Martin, R.R., ‘An overview of genetic algorithms, Part 1, Fundamentals; Part 2, Research topics’,University Computing, 199315(2), pp. 58–69 and15(4), pp. 170–181.

    Google Scholar 

  9. Holland, J.H.,Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, MI, 1975.

    Google Scholar 

  10. Schraudolph, N. and Grefenstette, J.J.,GAuscd User Manual, Computer Science & Engineering Department, University of California, San Diego.

  11. Manson, S.S.,Determination of elastic stresses in gas turbine disks, NACA Report 871, 1948.

  12. Genta G.,Kinetic Energy Storage, Butterworths, London, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genta, G., Bassani, D. Use of genetic algorithms for the design of rotors. Meccanica 30, 707–717 (1995). https://doi.org/10.1007/BF00986575

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00986575

Key words

Navigation