Skip to main content
Log in

Evolutionary change in seed size among some legume species: The effects of phylogeny

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The importance of phylogenetic effects in controlling seed size variation at the macroevolutionary levels was examined using species of a well-defined, monophyletic family, the Leguminosae. A nested ANOVA was used to separate variance components at the various taxonomic levels such as subfamily, genus, and subgenus. Statistical significance was found at most of the taxonomic levels examined, which suggests that phylogeny as shown by the accepted taxonomy of the family, exerted a substantial influence over seed size variation. Thus, there appears to be a characteristic mean seed size for each genus and subgenus. The overall positive correlation between plant height and seed size was interpreted as a scaling of seed size to plant height. When the effect of plant height was controlled, the amount of variance changed to some extent across taxonomic levels, though resulting in no change in statistical significance at various taxonomic levels. This results indicate that phylogenetic effects in seed size variation among congeneric or consubgeneric groupings were largely independent of allometric effects. The patterns of variance components and intraclass correlation coefficients for seed size differed to some extent among subfamilies. The difference in those patterns among taxa will reflect evolutionary change more closely with larger sample sizes. A simple inverse relationship between seed size and number per fruit among related legume species was difficult to generalize. This was perhaps due to phylogenetic constraints on seed size and/or seed number (or ovule number). These results demonstrate that phylogeny and plant height affect seed size variation among related species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali S. I. (1968) Correlation between seed weight and breeding system in closely related amphimitic taxa. Nature 218: 492–493.

    PubMed  Google Scholar 

  • Armstrong D. P., Westoby M. (1993) Seedlings from large seeds tolerate defoliation better: a test using phylogenetically independent contrasts. Ecology 74: 1092–1100.

    Google Scholar 

  • Arroyo M. T. K. (1981) Breeding systems and pollination biology in Leguminosae. In: Polhill R. M., Raven P. H. (eds.) Advances in legume systematics. Royal Bot. Gard. Kew, pp. 723–769.

    Google Scholar 

  • Baker H. G. (1972) Seed weight in relation to environmental conditions in California. Ecology 53: 997–1010.

    Google Scholar 

  • Baker H. G., Baker I. (1981) Chemical constituents of nectar in relation to pollination mechanisms and phylogeny. In: Nitecki M. H. (ed.) Biochemical aspects of evolutionary biology. University of Chicago Press, Chicago, pp. 131–171.

    Google Scholar 

  • Barneby R. C. (1964) Atlas of North AmericanAstragalus. Mem. N. Y. Bot. Gard. vol. 13, Part 1 and 2.

  • Bell G. (1989) A comparative method. Amer. Nat. 133: 553–571.

    Google Scholar 

  • Corner E. J. H. (1967) On thinking big. Phytomorph. 17: 24–28.

    Google Scholar 

  • Felsenstein J. (1985) Phylogenies and the comparative method. Amer. Nat. 125: 1–15.

    Google Scholar 

  • Foster S. A., Janson C. H. (1985) The relationship between seed size and establishment conditions in tropical woody plants. Ecology 66: 773–780.

    Google Scholar 

  • Gould S. J., Lewontin R. C. (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. London Series B 205: 581–598.

    Google Scholar 

  • Haig D., Westoby M. (1991) Seed size, pollination costs and angiosperm success. Evol. Ecol. 5: 231–247.

    Google Scholar 

  • Harper J. L., Lovell P. H., Moore K. G. (1970) The shapes and sizes of seeds. Ann. Rev. Ecol. Syst. 1: 327–356.

    Google Scholar 

  • Harvey P. H., Mace G. M. (1982) Comparisons between taxa and adaptive trends: problems of methodology. In: King's College Sociobiology Group (eds.) Current Problems in Sociobiology. Cambridge University Press, Cambridge, pp. 343–361.

    Google Scholar 

  • Hodgson J. G., Mackey J. M. L. (1986) The ecological specialization of dicotyledonous families within a local flora: some factors constraining optimization of seed size and their possible evolutionary significance. New Phytol. 104: 497–515.

    Google Scholar 

  • Irwin H. S., Barneby R. C. (1982) The American Cassiinae. A Synoptical Revision of Leguminosae Tribe Cassieae Substribe Cassiinae in the New World. Mem. N. Y. Bot. Gard. vol. 35.

  • Janzen D. H. (1969) Seed-eaters versus seed size, number, toxicity and dispersal. Evolution 23: 1–27.

    Google Scholar 

  • Kelly C. K. (1995) Seed size in tropical trees: a comparative study of factors affecting seed size in Peruvian angiosperms. Oecologia 102: 377–388.

    Google Scholar 

  • Kelly C. K., Purvis A. (1993) Seed size and establishment conditions in tropical trees. Oecologia 94: 356–360.

    Google Scholar 

  • Kress W. J. (1981) Sibling competition and evolution of pollen unit, ovule number, and pollen vector in angiosperms. Syst. Bot. 6: 101–112.

    Google Scholar 

  • Leishman M. R., Westoby M., Jurado E. (1995) Correlates of seed size variation: a comparison among five temperate floras. J. Ecol. 83: 517–530.

    Google Scholar 

  • Leishman M. R., Westoby M. (1994) Hypotheses on seed size: tests using the semiarid flora of western New South Wales, Australia. Amer. Nat. 143: 890–906.

    Google Scholar 

  • Lessios H. A. (1990) Adaptation and phylogeny as determinants of egg size in echinoderms from the two sides of the Isthmus of Panama. Amer. Nat. 135: 1–13.

    Google Scholar 

  • Matlack G. R. (1987) Diaspore size, shape, and fall behavior in wind-dispersed plant species. Amer. J. Bot. 74: 1150–1160.

    Google Scholar 

  • Mazer S. J. (1987) Maternal investment and male reproductive success in angiosperms: parent-offspring conflict or sexual selection? Biol. Soc. Linn. Soc. 30: 115–133.

    Google Scholar 

  • Muller J. (1984) Significance of fossil pollen for angiosperm history. Ann. Missouri Bot. Gard. 71: 419–443.

    Google Scholar 

  • Nielson I., Baretta-Kuipers T., Guinet P. (1984) The genusArchidendron (Leguminosae — Mimosoideae). Opera Botanica vol. 76.

  • O'Dowd D. J., Gill A. M. (1986) Seed dispersal syndromes in Australian Acacia. In: Murray D. R. (ed.) Seed dispersal. Academic Press, New York, pp. 87–121.

    Google Scholar 

  • Pagel M. D., Harvey P. H. (1988) Recent developments in the analysis of comparative data. Q. Rev. Biol. 63: 413–440.

    PubMed  Google Scholar 

  • Peat H. J., Fitter A. H. (1994) Comparative analyses of ecological characteristics of British angiosperms. Biol. Rev. 69: 95–115.

    Google Scholar 

  • Pedhauzer E. J. (1982) Multiple regression in behavioral research, 2nd edn. Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Pedley L. (1978) A revision ofAcacia Mill. in Queensland. Part 1. Austrobaileya 1: 75–234.

    Google Scholar 

  • Pedley L. (1979) A revision ofAcacia Mill. in Queensland. Part 2. Austrobaileya 1: 235–337.

    Google Scholar 

  • Polhill R. M. (1982)Crotalaria in Africa and Madagascar. A. A. Balkema, Rotterdam.

    Google Scholar 

  • Polhill R. M., Raven P. H., Stirton C. H. (1981) Evolution and systematics of the Leguminosae. In: Polhill R. M., Raven P. H. (eds.) Advances in legume systematics. Royal Bot. Gard. Kew, pp. 1–26.

    Google Scholar 

  • Primack R. B. (1987) Relationships among flowers, fruits, and seeds. Ann. Rev. Ecol. Syst. 18: 409–430.

    Google Scholar 

  • Queller D. C. (1983) Kin selection and conflict in seed maturation. J. Theor. Biol. 100: 153–172.

    Google Scholar 

  • Raven P. H., Polhill R. M. (1981) Biogeography of the Leguminosae. In: Polhill R. M., Raven P. H. (eds.) Advances in legume systematics. Royal Bot. Gard. Kew, pp. 27–34.

    Google Scholar 

  • Salisbury E. J. (1942) The reproductive capacity of plants. G. Bell and Sons, London.

    Google Scholar 

  • SAS, 1985: SAS User's Guide: Statistics. SAS Institute, Cary.

    Google Scholar 

  • Silvertown J. W. (1981) Seed size, life span, and germination date as coadapted features of plant life history. Amer. Nat. 118: 860–864.

    Google Scholar 

  • Silvertown J. W. (1989) The paradox of seed size and adaptation. Trends Ecol. Evol. 4: 24–26.

    Google Scholar 

  • Small E. (1989) The evolution of genera in the Leguminosae. Ann. Missouri Bot. Gard. Monogr. Syst. Bot. 29: 467–486.

    Google Scholar 

  • Smith C. S., Fretwell S. D. (1974) The optimal balance between size and number of offspring. Amer. Nat. 108: 499–506.

    Google Scholar 

  • Sokal R. R., Rohlf F. J. (1981) Biometry, 2nd edn. W. H. Freeman and Company, New York.

    Google Scholar 

  • Thompson K., Rabinowitz D. (1989) Do big plants have big seeds? Amer. Nat. 133: 722–728.

    Google Scholar 

  • Uma Shaanker R. U., Ganashaiah K. N., Bawa K. S. (1988) Parent-offspring conflict, sibling rivalry, and brood size patterns in plants. Ann. Rev. Ecol. Syst. 19: 177–205.

    Google Scholar 

  • van der Pijl L. (1956) Classification of the leguminous fruits according to their ecological and morphological properties. Proc. Nederl. Akad. Wet. C. 59: 301–313.

    Google Scholar 

  • van der Pijl L. (1982) Principles of dispersal in higher plants, 3rd edn. Springer, New York.

    Google Scholar 

  • Wanntorp H. E. (1983) Historical constraints in adaptation theory: traits and non-traits. Oikos 41: 157–160.

    Google Scholar 

  • Webb C. J. (1984) Constraints on the evolution of plant breeding systems and their relevance to systematics. In: Grant W. F. (ed.) Plant biosystematics. Academic Press, Toronto, pp. 249–270.

    Google Scholar 

  • Wright S. J., Calderon O. (1995) Phylogenetic patterns among tropical flowring phenologies. J. Ecol. 83: 937–948.

    Google Scholar 

  • Wunderlin R. P. (1983a) Revision of the arborescentBauhinias (Fabaceae: Caesalpinioideae: Cercideae) native to Middle America. Ann. Missouri Bot. Gard. 70: 95–127.

    Google Scholar 

  • Wunderlin R. P. (1983b) Three new species ofBauhinia (Fabaceae) from Ecuador. Brittonia 35: 335–340.

    Google Scholar 

  • Zar J. H. (1984) Biostatistical analysis, 2nd edn. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, H., Primack, R.B. Evolutionary change in seed size among some legume species: The effects of phylogeny. Pl Syst Evol 219, 151–164 (1999). https://doi.org/10.1007/BF00985576

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00985576

Key words

Navigation