Skip to main content
Log in

The reproductive biology ofJaborosa integrifolia (Solanaceae): Why its fruits are so rare?

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Jaborosa integrifolia exhibits stigma-height polymorphism. There are individuals with flowers where anthers and stigma are at the same height but the rule is variable herkogamy, the most common type (75%) being that with an exerted stigma. Self- and cross-tubes did not differ in their capability to reach the ovary (t = −0.67,P < 0.53); they had a high growth rate (6.95 ± 2.28 mm h−1). There is not autogamy but mostly self-incompatibility. Fruits from controlled cross-pollination showed the highest seed set and seed viability. The nectar sugar is characterized by a similar amount of glucose and fructose, and by the absence of sucrose. Although nectar secretion was continuous throughout the life of the flower, most nectar was secreted during the first 24 h after flower opening. Nectar production costs appear to be lower than in other species since nectar secretion is neither inhibited after a removal (i.e. a pollinator visit) nor reabsorbed as the flower ages. Sphingids visit the flowers mainly after midnight. They insert their proboscis down to the base of the corolla tube to reach the nectar. The upper limit to fruit production is set by pollinator visits. Fruits produced from open-pollinated flowers are often predated by numerous larvae (mainly lepidopteran ones). Considering that this species is mostly self-incompatible and pollination is limited, that each plant displays only a low number of flowers throughout the flowering season, and that there is a high rate of fruit predation, it is not surprising that fruits ofJ. integrifolia are so rare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armbruster W. S. (1993) Evolution of plant pollination systems: hypotheses and tests with the neotropical vineDalechampia. Evolution 47: 1480–1505.

    Google Scholar 

  • Baker H. G., Baker I. (1973) Some anthecological aspects of the evolution of nectar-producing flowers, particularly amino acid production in nectar. In: Heywood V. H. (ed.) Taxonomy and ecology. Academic Press, London New York, pp. 243–264.

    Google Scholar 

  • Barboza G. E. (1989) Sobre la naturaleza tricelular de los granos de polen en la tribuJaboroseae (Solanaceae). Kurtziana 20: 139–145.

    Google Scholar 

  • Barboza G. E. (1991) El sistema reproductivo enJaborosa (Solanaceae). I. Esporogénesis, gametogénesis y fecundación. Kurtziana 21: 39–79.

    Google Scholar 

  • Barboza G. E., Hunziker A. T. (1987) Estudios sobre Solanaceae XXV. Revisión deJaborosa. Kurtziana 19: 77–153.

    Google Scholar 

  • Barrett S. C. H. (1992) Heterostylous genetic polymorphisms: model systems for evolutionary analysis. In: Barrett S. C. H. (ed.) Evolution and function of heterostyly. Monographs on theoretical and applied genetics, 15. Springer, Berlin, pp. 1–29.

    Google Scholar 

  • Barrett S. C. H., Richards J. H. (1990) Heterostyly in tropical plants. Mem. New York Bot. Gard. 55: 35–61.

    Google Scholar 

  • Bernardello L. M., Galetto L., Jaramillo J., Grijalba E. (1994) Floral nectar chemical composition of some species from Reserva Río Guajalito, Ecuador. Biotropica 26: 113–116.

    Google Scholar 

  • Bernardello L. M., Rodríguez I., Stiefkens L., Galetto L. (1995) The hybrid nature ofLycium ciliatum ×cestroides (Solanaceae): experimental, anatomical, and cytological evidence. Canad. J. Bot. 71: 1995–2005.

    Google Scholar 

  • Bookman S. S. (1984) Evidence for selective fruit production inAsclepias. Evolution 38: 72–86.

    Google Scholar 

  • Búrquez A., Corbet S. A. (1991) Do flowers reabsorb nectar? Funct. Ecol. 5: 369–379.

    Google Scholar 

  • Campbell D. R. (1987) Interpopulation variation in fruit production: the role of pollination-limitation in the Olympic Mountains. Amer. J. Bot. 74: 269–273.

    Google Scholar 

  • Dafni A. (1992) Pollination Ecology. A practical approach. Oxford University Press, Oxford.

    Google Scholar 

  • Dulberger R. (1992) Floral polymorphisms and their functional significance in the heterostylous syndrome. In: Barrett S. C. H. (ed.) Evolution and function of heterostyly. Monographs on theoretical and applied genetics, 15. Springer, Berlin, pp. 41–84.

    Google Scholar 

  • Eckert C. G., Barrett S. C. H. (1994) Tristyly, self-compatibility and floral variation inDecodon verticillatus (Lythraceae). Biol. J. Linn. Soc. 53: 1–30.

    Google Scholar 

  • Feinsinger P. (1987) Approaches to nectarivore-plant interactions in the New World. Rev. Chilena Hist. Nat. 60: 285–319.

    Google Scholar 

  • Fenster C. B. (1991) Selection on floral morphology by hummingbirds. Biotropica 23: 98–101.

    Google Scholar 

  • Galen C. (1996) Rates of floral evolution: adaptation to bumblebees in an alpine wildflower,Polemonium viscosum. Evolution 50: 120–125.

    Google Scholar 

  • Galetto L. (1991) Sobre el néctar y los nectarios de algunas especies deNicotiana (Solanaceae). Kurtziana 21: 165–176.

    Google Scholar 

  • Galetto L. (1993) Estudios sobre el néctar en Asteridae argentinas: análisis químico e histología comparada de las estructuras secretoras. Tesis Doctoral, National University of Córdoba, Argentina.

    Google Scholar 

  • Galetto L., Bernardello L. M. (1993) Nectar secretion pattern and removal effects in three Solanaceae. Canad. J. Bot. 71: 1394–1398.

    Google Scholar 

  • Galetto L., Bernardello L. M. (1996) Characteristics of secretion of nectar byLycium cestroides, L. ciliatum (Solanaceae) and their hybrid. Pl. Spec. Biol. 11: 157–163.

    Google Scholar 

  • Galetto L., Bernardello L. M., Sosa C. A. (1998) The relationship between floral nectar composition and visitors inLycium (Solanaceae) from Argentina and Chile: what does it reflect? Flora 193: 303–314.

    Google Scholar 

  • Ganders F. R. (1979) The biology of heterostyly. New Zealand J. Bot. 17: 607–635.

    Google Scholar 

  • Harder L. D., Wilson W. G. (1994) Floral evolution and male reproductive success: optimal dispensing schedules for pollen dispersal by animal-pollinated plants. Evol. Ecol. 8: 542–559.

    Google Scholar 

  • Hunziker A. T. (1967) Estudios sorbe Solanaceae. IV. Una especie nueva y dos notas críticas. Kurtziana 4: 131–138.

    Google Scholar 

  • Kearns C. A., Inouye D. W. (1993) Techniques for pollination biologists. University Press of Colorado, Niwot, Colorado.

    Google Scholar 

  • Knudsen J. T., Tollsten L. (1993) Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa. Bot. J. Linn. Soc. 113: 263–284.

    Google Scholar 

  • Lee T. D. (1998) Patterns of fruit and seed production. In: Lovett-Doust J., Lovett-Doust L. (eds.) Plant reproductive ecology. Patterns and strategies. Oxford University Press, New York Oxford, pp. 179–202.

    Google Scholar 

  • Lloyd D. G., Webb C. J. (1992) The evolution of heterostyly. In: Barrett S. C. H. (ed.) Evolution and function of heterostyly. Monographs on theoretical and applied genetics, 15. Springer, Berlin, pp. 151–178.

    Google Scholar 

  • Mitchell R. J., Waser N. M. (1992) Adaptive significance ofIpomopsis aggregata nectar production: pollination success of single flowers. Ecology 73: 633–638.

    Google Scholar 

  • Neeman G., Nesher R. (1995) Pollination ecology and the significance of floral color change inLupinus pilosus L. (Fabaceae). Israel J. Pl. Sci. 43: 135–145.

    Google Scholar 

  • Nilsson L. A. (1988) The evolution of flowers with deep corolla tubes. Nature 334: 147–149.

    Google Scholar 

  • Olivieri I., Couvet D., Slatkin M. (1994) Allocation of reproductive effort in perennial plants under pollen limitation. Amer. Naturalist 144: 373–394.

    Google Scholar 

  • Plowright R. C. (1987) Corolla depth and nectar concentration: an experimental study. Canad. J. Bot. 65: 1011–1013.

    Google Scholar 

  • Proctor M., Yeo P., Lack A. J. (1996) The Natural History of Pollination. Timber Press, Oregon.

    Google Scholar 

  • Pyke G. H. (1991) What does it cost a plant to produce floral nectar? Nature 350: 58–59.

    Google Scholar 

  • Rathcke B. J. (1992) Nectar distributions, pollinator behaviour, and plant reproductive success. In: Hunter M. D., Ohguishi T., Price P. W. (eds.) Effects of resource distribution on animal-plant interactions. Academic Press, New York, pp. 113–138.

    Google Scholar 

  • Richards J. H., Barrett S. C. H. (1992) The development of heterostyly. In: Barrett S. C. H. (ed.) Evolution and function heterostyly. Monographs on theoretical and applied genetics, 15. Springer, Berlin, pp. 85–127.

    Google Scholar 

  • Shuel R. W. (1961) Influence of reproductive organs on secretion of sugars in flowers ofStreptosolen jamesonii. Miers. Pl. Physiol. 36: 265–271.

    Google Scholar 

  • Sokal R. R., Rohlf F. J. (1995) Biometry. W. H. Freeman, San Francisco, California.

    Google Scholar 

  • SPSS Inc. (1992) SPSS for Windows: base system user's guide, Release 5.0. SPSS Inc., Chicago.

    Google Scholar 

  • Stephenson A. G., Windsor J. A. (1986)Lotus corniculatus regulates offsprings quality through selective fruit abortion. Evolution 40: 453–458.

    Google Scholar 

  • Stöcklin J. (1997) Competition and the compensatory regulation of fruit and seed set in the perennial herbEpilobium dodonaei (Ongraceae). Amer. J. Bot. 84: 763–768.

    Google Scholar 

  • Sutherland S. (1987) Why hermaphroditic plants produce many more flowers than fruits: experimental tests withAgave mckelveyana. Evolution 41: 750–759.

    Google Scholar 

  • Sweeley E. C., Bentley R., Makita M., Wells W. W. (1963) Gas liquid chromatography of trimethylsilyl derivatives of sugars and related substances. J. Amer. Chem. Soc. 85: 2497–2507.

    Google Scholar 

  • Torres C., Galetto L. (1998) Patterns and implications of floral nectar secretion, chemical composition, removal effects, and standing crop inMandevilla pentlandiana (Apocynaceae). Bot. J. Linn. Soc. 127: 207–223.

    Google Scholar 

  • Vignoli L. (1945) Sterilità e moltiplicazione vegetativa inJaborosa, Artemisia, Hemerocallis. Nuovo Giorn. Bot. Ital. 52: 1–10.

    Google Scholar 

  • Webb C. J., Lloyd D. G. (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms. New Zealand J. Bot. 24: 163–178.

    Google Scholar 

  • Wiens D., Calvin C. L., Wilson C. A., Davern C. I., Frank D., Seavey S. R. (1987) Reproductive success, spontaneous embryo abortion, and genetic load in flowering plants. Oecologia 71: 501–509.

    Google Scholar 

  • Willmott A. P., Búrquez A. (1996) The pollination ofMerremia palmeri (Convolvulaceae): can hawk moths be trusted? Amer. J. Bot. 83: 1050–1056.

    Google Scholar 

  • Zimmerman M. (1988) Nectar production, flowering phenology and strategies. In: Lovett-Doust J., Lovett-Doust L. (eds.) Plant reproductive ecology. Patterns and strategies. Oxford University Press, New York Oxford, pp. 157–178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vesprini, J.L., Galetto, L. The reproductive biology ofJaborosa integrifolia (Solanaceae): Why its fruits are so rare?. Pl Syst Evol 225, 15–28 (2000). https://doi.org/10.1007/BF00985456

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00985456

Key words

Navigation