Skip to main content
Log in

Pollen morphology and functional dioecy inSolanum (Solanaceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Dioecy has evolved independently several times in the large, mostly tropical genusSolanum. In all cases of dioecy inSolanum functionally male flowers have normal anthers, normal pollen and reduced stigmas while functionally female flowers have stigmas and anthers that appear normal but contain non-functional, usually inaperturate pollen. The inaperturate pollen has living cytoplasm, but apparently never germinates and it has been hypothesised that the pollen in these functionally female flowers is retained as a pollinator reward. Pollen morphology is compared in twelve of the thirteen known dioecious species ofSolanum, and some stages in the the development of inaperturate pollen in the anthers of functionally female flowers ofSolanum confertiseriatum of Western Ecuador are examined. Observations on the development and morphology of inaperturate pollen in functionally female flowers ofSolanum are related to hypotheses about the evolution of dioecy in the genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, G. J., 1977: The variation and evolution ofSolanum sectionBasarthrum. II. — Brittonia29: 116–128.

    Google Scholar 

  • —, 1979: DioeciousSolanum species of hermaphroditic origin is an example of broad convergence. — Nature282: 836–838.

    Google Scholar 

  • —, 1982: Three taxa constitute the sexes of a single species of dioeciousSolanum. — Taxon81: 667–672.

    Google Scholar 

  • —, 1989: Functional dioecy and andromonoecy inSolanum. — Evolution43: 204–219.

    Google Scholar 

  • Baker, H., 1959: Reproductive methods as factors in speciation in flowering plants. — Cold Spring Harbor Symp. Quant. Biol.24: 177–191.

    PubMed  Google Scholar 

  • Baker, H. G., 1976: “Mistake” pollination as a reproductive system with special reference to the Caricaceae. — InBurley, J., Styles, B. T., (Eds): Tropical trees: variation, breeding and conservation, pp. 161–169. — London: Academic Press.

    Google Scholar 

  • Bawa, J. S., 1980: Evolution of dioecy in flowering plants. — Annual Rev. Ecol. Syst.11: 15–39.

    Google Scholar 

  • —, 1994: Pollination of tropical dioecious angiosperms: a reassessment? No, not yet. — Amer. J. Bot.81: 456–460.

    Google Scholar 

  • Bawa, K. S., Beach, J. H., 1981: Evolution of sexual systems in flowering plants. — Ann. Missouri Bot. Gard.68: 254–274.

    Google Scholar 

  • —, 1975: Dioecism in tropical forest trees. — Evolution29: 167–179.

    Google Scholar 

  • Beach, J. H., Bawa, K. S., 1980: Role of pollinators in the evolution of dioecy from distyly. — Evolution34: 1138–1142.

    Google Scholar 

  • Bitter, G., 1913: LXXVII. Solana nova vel minus cognita. VII. XVII. Solana diversa. — Repert. Spec. Nov. Regni Veg.11: 481–491.

    Google Scholar 

  • Blackmore, S., 1990: Sporoderm homologies and morphogenesis in land plants, with a discussion ofEchinops sphaerocephala (Compositae). — Pl. Syst. Evol., Suppl.5: 1–12.

    Google Scholar 

  • —, 1990: Angiosperm pollen wall ontogeny. — InBlackmore, S., Knox, R. B., (Eds): Microsporogenesis: ontogeny and evolution, pp. 173–192. — London: Academic Press.

    Google Scholar 

  • McConchie, C. A., Knox, R. B., 1988: Phylogenetic analysis of the male ontogenetic programme in aquatic and terrestrial monocotyledons. — Cladistics3: 333–347.

    Google Scholar 

  • Charlesworth, D., 1981: A further study of the problem of the maintenance of females in gynodioecious species. — Heredity46: 27–39.

    Google Scholar 

  • —, 1984: Androdioecy and the evolution of dioecy. — Biol. J. Linn. Soc.23: 333–348.

    Google Scholar 

  • Chaudhury, A. M., Lavithis, M., Taylor, P. E., Craig, S., Singh, M. B., Knox, R. B., Dennis, E. S., 1994: Genetic control of male fertility inArabidopsis thaliana: structural analysis of premeiotic developmental mutants. — Sexual Pl. Reprod.7: 17–28.

    Google Scholar 

  • Clark, A. G., 1996: Population genetic aspects of gametophytic self-incompatibility. — Pl. Spec. Biol.11: 13–21.

    Google Scholar 

  • Cox, P. A., 1982: Vertebrate pollination and the maintenance of dioecism inFreycinetia. — Amer. Naturalist120: 65–80.

    Google Scholar 

  • —, 1990: Pollination and the evolution of breeding systems inPandanaceae. — Ann. Missouri Bot. Gard.77: 816–840.

    Google Scholar 

  • —, 1993: Hydrophilous pollination and breeding system evolution in seagrasses: a phylogenetic approach to the evolutionary ecology ofCymodoceaceae. — Bot. J. Linn. Soc.113: 217–226.

    Google Scholar 

  • D'Arcy, W. G., 1972:Solanaceae studies II. Typification of the subdivisions ofSolanum. — Ann. Missouri Bot. Gard.59: 262–278.

    Google Scholar 

  • —, 1974 [1973]:Solanaceae. — InWoodson, R. E., Schery, R. W. Jr., (Eds): Flora of Panama. — Ann. Missouri Bot. Gard.60: 573–780.

    Google Scholar 

  • Darwin, C., 1876: The effects of cross and self fertilization of plants. — London: Murray.

    Google Scholar 

  • —, 1877: On different forms of flowers on plants of the same species. — London: Murray.

    Google Scholar 

  • Dickinson, H. G., 1976: Common factors in exine deposition. — InFerguson, I. K., Muller, J., (Eds): The evolutionary significance of the exine, pp. 67–89. — London: Academic Press.

    Google Scholar 

  • Bell, P. R., 1972: The identification of sporopollenin in sections of resin embedded tissues by controlled acetolysis. — Stain Technol.48: 17–22.

    Google Scholar 

  • Diggle, P. K., 1991: Labile sex expression in andromonoeciousSolanum hirtum: floral development and sex determination. — Amer. J. Bot.78: 377–393.

    Google Scholar 

  • —, 1993: Developmental plasticity, genetic variation, and the evolution of andromonoecy inSolanum hirtum (Solanaceae). — Amer. J. Bot.80: 967–973.

    Google Scholar 

  • —, 1994: The expression of andromonoecy inSolanum hirtum (Solanaceae): phenotypic plasticity and ontogenetic contingency. — Amer. J. Bot.81: 1354–1365.

    Google Scholar 

  • Donoghue, M. J., 1989: Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. — Evolution43: 1137–1156.

    Google Scholar 

  • Dover, G. A., 1972: The organisation and polarity of pollen mother cells ofTriticum aestivum. — J. Cell. Sci.11: 699–711.

    PubMed  Google Scholar 

  • Drahowzal, G., 1936: Beiträge zur Morphologie und Entwicklungsgeschichte der Pollenkörner. — Oesterr. Bot. Z.85: 241–269.

    Google Scholar 

  • Erdtman, G., 1960: The acetolysis technique, a revised description. — Svensk Bot. Tidskr.54: 561–564.

    Google Scholar 

  • Fox, J. F., 1985: Incidence of dioecy in relation to growth form, pollination and dispersal. — Oecologia67: 244–249.

    Google Scholar 

  • Freeman, D. C., Harper, K. T., Ostler, W. K., 1980: Ecology of plant dioecy in the intermountain region of Western North America and California. — Oecologia67: 244–249.

    Google Scholar 

  • Givnish, T. J., 1980: Ecological constraints on the evolution of breeding systems in seed plants: dioecy and dispersal in gymnosperms. — Evolution34: 959–972.

    Google Scholar 

  • —, 1982: Outcrossing versus ecological constraints in the evolution of dioecy. — Amer. Naturalist119: 849–865.

    Google Scholar 

  • Godward, M. B. E., Pell, K., 1994: Inheritance of exine pattern inNicotiana ×sanderae (Solanaceae). — Bot. J. Linn. Soc.115: 145–159.

    Google Scholar 

  • Heslop-Harrison, J., 1968: The pollen grain wall. — Science161: 230–237.

    PubMed  Google Scholar 

  • —, 1971: Wall pattern formation in angiosperm microsporogenesis. — Symp. Soc. Exp. Biol.25: 277–300.

    PubMed  Google Scholar 

  • Holmgren, P. K., Holmgren, N. H., Barnett, L. C., (Eds), 1990: Index herbariorum. 8th edn. — Regnum Veg.120.

  • Huyhn, K. L., 1976: Arrangement of some monosulcate, disulcate, trisulcate, and tricolpate pollen types in the tetrads, and some aspects of evolution in the angiosperms. — InFerguson, I. K., Muller, J., (Eds): The evolutionary significance of the exine, pp. 101–124. — London: Academic Press.

    Google Scholar 

  • Kaplan, S. M., Mulcahy, D. L., 1971: Mode of pollination and floral sexuality inThalictrum. — Evolution25: 659–688.

    Google Scholar 

  • Knapp, S., 1986: A revision ofSolanum sectionGeminata (G. Don)Walpers. — Ph.D. Dissertation, Cornell University, Ithaca, NY.

    Google Scholar 

  • —, 1991: A revision of theSolanum sessile species group (sectionGeminata pro parte:Solanaceae). — Bot. J. Linn. Soc.105: 179–210.

    Google Scholar 

  • —, 1997: A revision ofSolanum sectionPteroidea Dunal (Solanaceae). — Bull. Nat. Hist. Mus. London (Bot.)27: 31–73.

    Google Scholar 

  • Knox, R. B., 1984: The pollen grain. — InJohri, B. M., (Ed.): Embryology of angiosperms, pp. 197–271. — Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Lahav-Ginott, S., Cronk, Q. C. B., 1993: The mating system ofElatostema (Urticaceae) in relation to morphology: a comparative study. — Pl. Syst. Evol.186: 135–145.

    Google Scholar 

  • Levine, D. A., Anderson, G. J., 1986: Evolution of dioecy in an AmericanSolanum. — InD'Arcy, W. G., (Ed.):Solanaceae: biology and systematics, pp. 264–273. — New York: Columbia University Press.

    Google Scholar 

  • Linnaeus, C., 1753: Species plantarum. — Stockholm: Salvivs.

    Google Scholar 

  • Lloyd, D. G., 1975: The maintenance of gynodioecy and androdioecy in angiosperms. — Genetica45: 325–339.

    Google Scholar 

  • —, 1976: The transmission of genes via pollen and ovules in gynodioecious angiosperms. — Theor. Populat. Biol.9: 299–316.

    Google Scholar 

  • —, 1982: Selection of combined versus separate sexes in seed plants. — Amer. Naturalist120: 571–585.

    Google Scholar 

  • Muenchow, G. E., 1987: Is dioecy associated with fleshy fruit? — Amer. J. Bot.74: 287–293.

    Google Scholar 

  • Nettancourt, D. de, 1977: Incompatibility in angiosperms. — Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Owens, S., Sheldon, J. M., Dickinson, H. G., 1990: The microtubular cytoskeleton during pollen development. — Pl. Syst. Evol., Suppl.5: 31–37.

    Google Scholar 

  • Peirson, B. N., Owen, H. A., Feldmann, K. A., Makaroff, C. A., 1996: Characterization of three male-sterile mutants ofArabidopsis thaliana exhibiting alterations in meiosis. — Sexual Pl. Reprod.9: 1–16.

    Google Scholar 

  • Peloquin, S. J., 1983: Genetic engineering with meiotic mutants. — InMulcahy, D. L., Ottaviano, E., (Eds): Pollen: biology and implications for plant breeding, pp. 311–316. — New York: Elsevier.

    Google Scholar 

  • Persson, V., Knapp, S., Blackmore, S., 1994: Pollen morphology and systematics of tribeJuanulloaeae A. T. Huntziker (Solanaceae). — Rev. Palaeobot. Palynol.83: 1–30.

    Google Scholar 

  • Preuss, D., Rhee, S. H., Davis, R. W., 1994: Tetrad analysis inArabidopsis with mutation of the QUARTET (QRT) genes. — Science264: 1458–1460.

    PubMed  Google Scholar 

  • Punt, W., Monna-Brands, M., 1980: The Northwest European pollen flora, 8.Solanaceae. — InPunt, W., Clarke, G. C. S., (Eds): The Northwest European pollen floraII. pp. 1–30. — Amsterdam: Elsevier.

    Google Scholar 

  • —, 1994: Glossary of pollen and spore terminology. — Utrecht: L. P. P. Foundation.

    Google Scholar 

  • Quiros, C. F., 1975: Exine pattern of a hybrid betweenLycopersicon esculentum andSolanum penellii. — J. Heredity66: 45–47.

    Google Scholar 

  • Renner, S. S., Feil, J. P., 1993: Pollinators of tropical dioecious angiosperms. — Amer. J. Bot.80: 1100–1107.

    Google Scholar 

  • Rick, C. M., 1948: Genetics and the development of nine male-sterile tomato mutants. — Hilgardia18: 599–633.

    Google Scholar 

  • Ricklefs, R. E., 1995: Dioecy and its correlates in flowering plants. — Amer. J. Bot.82: 596–606.

    Google Scholar 

  • Ross, M. D., 1978: The evolution of gynodioecy and subdioecy. — Evolution32: 174–188.

    Google Scholar 

  • —, 1982: Five evolutionary pathways to subdioecy. — Amer. Naturalist119: 297–318.

    Google Scholar 

  • Sakai, A. K., Karoly, K., Weller, S. G., 1989: Inbreeding depression inSchiedea globosa andS. salicaria (Caryophyllaceae), subdioecious and gynodioceious Hawaiian species. — Amer. J. Bot.76: 437–444.

    Google Scholar 

  • Schultz, S. T., 1994: Nucleo-cytoplasmic sterility and alternative routes to dioecy. — Evolution48: 1933–1945.

    Google Scholar 

  • Sheldon, J. M., Dickinson, H. G., 1983: Determination of patterning in the pollen wall ofLilium henryi. — J. Cell. Sci.63: 191–208.

    PubMed  Google Scholar 

  • Spooner, D. M., Anderson, G. J., Jansen, R. K., 1993: Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes and pepinos (Solanaceae). — Amer. J. Bot.80: 676–688.

    Google Scholar 

  • Symon, D. E., 1970: Dioecious solanums. — Taxon19: 909–910.

    Google Scholar 

  • —, 1979: Sex forms inSolanum (Solanaceae) and the role of pollen collecting insects. — InHawkes, J. G., Lester, R. N., Skelding, A. D., (Eds): The biology and taxonomy of theSolanaceae, pp. 385–397. — London: Academic Press.

    Google Scholar 

  • —, 1981: A revision of the genusSolanum in Australia. — J. Adelaide Bot. Gard.4: 1–367.

    Google Scholar 

  • Thomson, J. D., Brunet, J., 1990: Hypotheses for the evolution of dioecy in seed plants. — Trends Ecol. Evol.5: 11–16.

    Google Scholar 

  • Theerakulpisut, P., Singh, M. B., Knox, R. B., 1991: Molecular aspects of the development of reproductive cells. — InHarding, J., Singh, F., Mol, J. N. M., (Eds): Genetics and breeding of ornamental species, pp. 333–366. — Dordrecht: Kluwer Academic Press.

    Google Scholar 

  • Trass, J. A., Burgain, S., Dumas De Vaulx, R., 1989: The organisation of the cytoskeleton during meiosis in eggplant (Solanum melongena L.): microtubules and F-actin are both necessary for coordinated meiotic division. — J. Cell Sci.92: 541–550.

    Google Scholar 

  • Weber, C. A., 1928:Georg Bitter. — Ber. Deutsch. Bot. Ges.46: 148–156.

    Google Scholar 

  • Weller, S. G., Sakai, A. K., 1991: The genetic basis of male sterility inSchiedea (Caryophyllaceae), an endemic Hawaiian genus. — Heredity67: 265–273.

    Google Scholar 

  • —, 1995: The evolution of self-incompatibility in flowering plants: a phylogenetic approach. — InHoch, P. C., Stephenson, A. G., (Eds): Experimental and molecular approaches to plant biosystematics, pp. 355–382. — St. Louis: Missouri Botanical Garden.

    Google Scholar 

  • Whalen, M. D., 1984: Conspectus of species groups inSolanum subgenusLeptostemonum. — Gentes Herb.12: 179–282.

    Google Scholar 

  • —, 1981: Distribution of gametophytic self-incompatibility and infrageneric classification inSolanum. — Taxon30: 761–767.

    Google Scholar 

  • —, 1986: Andromonoecy inSolanum. — InD'Arcy, W. G., (Ed.):Solanaceae: Biology and systematics, pp. 284–302. — New York: Columbia University Press.

    Google Scholar 

  • —,Heiser, C. B. Jr., 1981: Taxonomy ofSolanum sectionLasiocarpa. — Gentes Herb.12: 41–129.

    Google Scholar 

  • Yampolsky, C., Yampolsky, H., 1922: Distribution of sex forms in the phanerogamic flora. — Biblioth. Genet.3: 1–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knapp, S., Persson, V. & Blackmore, S. Pollen morphology and functional dioecy inSolanum (Solanaceae) . Pl Syst Evol 210, 113–139 (1998). https://doi.org/10.1007/BF00984731

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984731

Key words

Navigation