Skip to main content
Log in

Evolution of genome size inAllium (Alliaceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The 4C DNA amounts of 86 species fromAllium subgg.Allium, Rhizirideum, Bromatorrhiza, Melanocrommyum, Caloscordum andAmerallium show a 8.35-fold difference ranging from 35.60 pg (A. ledebourianum, 2n = 16) to 297.13 pg (A. validum 2n = 56). At diploid level the difference is 3.57-fold betweenA. ledebourianum (35.60 pg) andA. ursinum (127.14 pg). This shows that a significant loss and/or gain of DNA has occurred during evolution. On average subgg.Rhizirideum andAllium have less DNA amount than subgg.Melanocrommyum andAmerallium. The distribution of nuclear DNA amounts does not show discontinuous pattern and regular groups. The evolution of genome size has been discussed in relation to polyploidy and genomes, heterochromatin, adaptive changes in morphological characteristics, phenology and ecological factors, and infrageneric classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, L. K., Stack, S. M., Fox, M. H., Zhang, C., 1985: The relationship between genome size and synaptonemal complex length in higher plants. — Exp. Cell Res.156: 367–377.

    PubMed  Google Scholar 

  • Arumuganathan, K., Earle, E. D., 1991: Estimation of nuclear DNA content of plants by flow cytometry. — Pl. Cell Molec. Biol. Reporter9: 229–233.

    Google Scholar 

  • Badr, A., Elkington, T. T., 1977: Variation of Giemsa C-banded and fluorochrome banded karyotypes, and relationship inAllium subgen.Molium. — Pl. Syst. Evol.129: 23–35.

    Google Scholar 

  • —, 1978: Numerical taxonomy of species inAllium subgenusMolium. — New Phytol.81: 401–407.

    Google Scholar 

  • Bennett, M. D., 1971: The duration of meiosis. — Proc. Roy. Soc. London, Ser. Biol. Sci.178: 277–299.

    Google Scholar 

  • —, 1972: Nuclear DNA content and minimum generation time in herbaceous plants. — Proc. Roy, Soc. London, Ser. B, Biol. Sci.181: 109–135.

    Google Scholar 

  • —, 1995: Nuclear DNA amounts in angiosperms. — Ann. Bot.76: 113–176.

    Google Scholar 

  • Bösen, H., Nagl, W., 1978: Short duration of mitotic and endomitotic cell cycle in the heterochromatin rich monocotAllium carinatum. — Cell Biol. Int. Rep.2: 565–571.

    PubMed  Google Scholar 

  • Cai, Q., Chinnappa, C. C., 1987: Giemsa C-banded karyotypes of seven North American species ofAllium. — Amer. J. Bot.74: 1087–1092.

    Google Scholar 

  • Chakravarti, B., Sen, B., 1992: DNA and protein contents in different varieties ofAllium cepa andAllium sativum. —Allium Improv. Newslett.1: 61–65.

    Google Scholar 

  • Cheremushkina, V. A., 1992: Evolution of life forms of species in subgenusRhizirideum (Koch)Wendelbo, genusAllium L. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 27–34. — Gatersleben: IPK.

    Google Scholar 

  • Chool, W. J., 1971: Variation in nuclear DNA content in the genusVicia. — Genetics68: 195–211.

    Google Scholar 

  • Doležel, J., Sgorbati, S., Lucretti, S., 1992: Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. — Physiol. Pl.85: 625–631.

    Google Scholar 

  • Druselmann, S., 1992: Vergleichende Untersuchungen an Vertretern derAlliaceae Agardh 1. Morphologie der Keimpflanzen der GattungAllium L. — Flora186: 37–52.

    Google Scholar 

  • Ekberg, L., 1972: Studies in the genusAllium VI. Bulb structure in the subgenusMelanocrommyum. — Bot. Not.125: 93–101.

    Google Scholar 

  • El-Gadi, A., Elkington, T. T., 1975: Comparison of the Giemsa C-band karyotypes and the relationships ofAllium cepa, A. fistulosum andA. galanthum. — Chromosoma51: 19–23.

    Google Scholar 

  • —, 1977: Numerical taxonomic studies on species inAllium subgenusRhizirideum. — New Phytol.79: 183–201.

    Google Scholar 

  • Evans, I. J., James, A. M., Barnes, S.R., 1983: Organization and evolution of repeated DNA sequence in closely related plant genomes. — J. Molec. Biol.170: 803–826.

    PubMed  Google Scholar 

  • Friesen, N., 1992: Systematics of the Siberian polyploid complex in subgenusRhizirideum (Allium). — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 55–66. — Gatersleben: IPK.

    Google Scholar 

  • —, 1994: Allotetraploid origin ofAllium altyncolicum Friesen (sectionSchoenoprasum) as evidenced by C-banding. — Abstract book, Kew Chromosome Conference IV, p. 68. — Richmond: Royal Botanic Gardens, Kew.

    Google Scholar 

  • —, 1993: Quantitative phytogeography of the genusAllium in Siberia and Mongolia. — Nordic J. Bot.13: 295–307.

    Google Scholar 

  • Fritsch, R. M., 1988: Anatomische Untersuchungen an der Blattspreite beiAllium L. (Alliaceae) I. Arten mit einer einfachen Leitbündelreihe. — Flora181: 83–100.

    Google Scholar 

  • —, 1990: Bericht über Sammelreisen in Tadzhikistan (1983–1988) zum Studium von mittelasiatischen Vertretern der GattungAllium I. — Kulturpflanze38: 363–385.

    Google Scholar 

  • —, 1992a: Infra-subgeneric grouping in subgenusMelanocrommyum (Webb etBerth)Rouy. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 67–75. — Gatersleben: IPK.

    Google Scholar 

  • —, 1992b: Septal nectaries in the genusAllium — shape position and excretory canals. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 77–85. — Gatersleben: IPK.

    Google Scholar 

  • —, 1993: Anatomische Merkmale des Blütenschaftes in der GattungAllium L. und ihre systematische Bedeutung. — Bot. Jahrb. Syst.115: 97–131.

    Google Scholar 

  • Greilhuber, J., 1995: Chromosomes of the monocotyledons (general aspects). — InRudall, P. J., Cribb, P. J., Cutler, D. F., Humphries, C. J., (Eds): Monocotyledons: systematics and evolution, pp. 379–414. — Richmond: Royal Botanic Gardens, Kew.

    Google Scholar 

  • Grime, J. P., 1983: Prediction of weed and crop response to climate based upon measurements of DNA content. — Aspects Appl. Biol.4: 87–98.

    Google Scholar 

  • —, 1990: Ecological effects of climate change on plant populations and vegetative composition with particular reference to the British Flora. — InJackson, M., Ford, B. V., Parry, M. L., (Eds): Climatic change and plant genetic resources, pp. 40–60. — London: Belhaven Press.

    Google Scholar 

  • —, 1982: Variation in genome size, an ecological interpretation. — Nature299: 151–153.

    Google Scholar 

  • —, 1985: Nuclear DNA amounts, shoot phenology and species coexistence in a limestone community. — New Phytol.100: 435–445.

    Google Scholar 

  • Hanelt, P., 1985: Zur Taxonomie, Chorologie und Ökologie der Wildarten vonAllium L. sectt.Cepa (Mill.)Prokh. — Flora176: 99–116.

    Google Scholar 

  • —, 1990: Taxonomy, evolution and history. — InRabinowitch, H., Brewster, J. L., (Eds): Onions and allied crops,1, pp. 1–26. — Florida: CRC.

    Google Scholar 

  • —, 1992: Ovule number and seed weight in the genusAllium L. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 99–105. — Gatersleben: IPK.

    Google Scholar 

  • —, 1994: Notes on some infrageneric taxa inAllium L. — Kew Bull.49: 559–564.

    Google Scholar 

  • —, (Eds), 1992a: The genusAllium-taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991. — Gatersleben: IPK.

    Google Scholar 

  • —, 1992b: Infrageneric grouping ofAllium — The Gatersleben approach. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991 pp. 107–123. — Gatersleben: IPK.

    Google Scholar 

  • Havey, M. J., 1992: Restriction enzyme analysis of the chloroplast and nuclear 45s ribosomal DNA ofAllium sectionsCepa andPhyllodolon (Alliaceae). — Pl. Syst. Evol.183: 17–31.

    Google Scholar 

  • Jones, R. N., Brown, L. M., 1976: Chromosome evolution and DNA variation inCrepis. — Heredity36: 91–104.

    Google Scholar 

  • —, 1968: Nuclear DNA variation inAllium. — Heredity23: 591–605.

    Google Scholar 

  • Kamenetsky, I., 1992: Morphological types and root systems as indicators of evolutionary pathways in the genusAllium. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 129–135. — Gatersleben: IPK.

    Google Scholar 

  • Khassanov, F. O., Fritsch, R. M., 1994: New taxa inAllium L. subg.Melanocrommyum (Webb etBerth.)Rouy from Central Asia. — Linzer Biol. Beitr.26: 965–990.

    Google Scholar 

  • Kriebitzsch, W. U., 1992: Der CO2 und H2O Gasaustausch von Pflanzen in der Krautschicht eines Kalkbuchenwaldes in Abhängigkeit von Standortsfaktoren. I. Lichtabhängigkeit der Photosynthese im Jahresgang. — Flora186: 67–85.

    Google Scholar 

  • Kruse, J., 1992: Growth from characters and their variation inAllium L. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 173–179. — Gatersleben: IPK.

    Google Scholar 

  • —, 1994: Rasterelektronenmikroskopische Untersuchungen an Samen der GattungAllium L. IV. — Feddes Repert.105: 457–479.

    Google Scholar 

  • Labani, R. M., Elkington, T. T., 1987: Nuclear DNA variation in the genusAllium L. (Liliaceae). — Heredity59: 119–128.

    Google Scholar 

  • Linne von Berg, G., Samoylov, A., Klaas, M., Hanelt, P., 1996: Chloroplast DNA restriction analysis and the infrageneric grouping inAllium L. — Pl. Syst. Evol.200: 253–261.

    Google Scholar 

  • Maass, H. I., 1992: Electrophoretic study of storage proteins in the genusAllium L. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 183–189. — Gatersleben: IPK.

    Google Scholar 

  • Martin, P. G., Shanks, R., 1966: DoesVicia faba have multistranded chromosomes? — Nature211: 650–651.

    Google Scholar 

  • Mettin, D., Hanelt, P., 1973: Über Speziationsvorgänge in der GattungVicia L. — Kulturpflanze21: 25–54.

    Google Scholar 

  • Murin, A., 1976: Polyploidy and mitotic cycle. — Nucleus19: 192–195.

    Google Scholar 

  • Murray, B. G., Cameron, E. K., Standring, L. G., 1992: Chromosome numbers, karyotypes, and nuclear DNA variation inPratia Gaudin (Lobeliaceae). — New Zealand J. Bot.30: 187–197.

    Google Scholar 

  • Nagl, W., Fusenig, H. P., 1979: Types of chromatin organization in plant nuclei. — Pl. Syst. Evol., Suppl.2: 221–233.

    Google Scholar 

  • Nanush'yan, E. R., Polyakov, V., J., 1989: Zavisimost mezhdu kolichestvom DNA, tolshchinoj mitoticheskih khromosom i ob“emom pyl'tsevykh zeren u nekotorykh vidov rodaAllium L. — Biol. Nauki (Moskva)8: 50–56.

    Google Scholar 

  • Narayan, R. K. J., 1982: Discontinuous DNA variation in the evolution of plant species. The genusLathyrus. — Evolution36: 877–891.

    Google Scholar 

  • —, 1985: Discontinuous DNA variation in the evolution of plant species. — J. Genet.64: 101–109.

    Google Scholar 

  • —, 1987: Nuclear DNA changes, genome differentiation and evolution inNicotiana (Solanaceae). — Pl. Syst. Evol.157: 161–180.

    Google Scholar 

  • —, 1988a: Constraints upon the organization and evolution of chromosomes inAllium. — Theor. Appl. Genet.75: 319–329.

    Google Scholar 

  • —, 1988b: Evolutionary significance of DNA variation in plants. — Evol. Trends Pl.2: 121–130.

    Google Scholar 

  • Nath, P., Ohri, D., Pal, M., 1992: Nuclear DNA content inCelosia (Amaranthaceae). — Pl. Syst. Evol.182: 253–257.

    Google Scholar 

  • Nomura, Y., Oosawa, K., 1990: Production of interspecific hybrids betweenAllium chinense andA. thunbergii by in vitro ovule embryo culture. — Jap. J. Breed.40: 531–535.

    Google Scholar 

  • Ohle, H., 1992: Karyotype analysis using Giemsa C-banding technique inAllium species of six sections of the subgenusRhizirideum. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 221–232. — Gatersleben: IPK.

    Google Scholar 

  • Ohri, D., Khoshoo, T. N., 1986: Plant DNA contents and systematics. — InDutta, S. K., (Ed.): DNA systematics,2, plants, pp. 2–19. — Florida: CRC.

    Google Scholar 

  • —, 1991: The origin of chickpea (Cicer arietinum L.): karyotype and nuclear DNA amounts. — Heredity66: 367–372.

    Google Scholar 

  • Olszewska, M. J., Osiecka, R., 1982: The relationship between 2c DNA content, life cycle type, systematic position, and the level of DNA endoreduplication in nuclei of parenchyma cells during growth and differentiation of roots in some monocotyledonous species. — Biochem. Physiol. Pflanzen177: 319–336.

    Google Scholar 

  • Özhatay, N., 1983: Cytotaxonomic studies on the genusAllium in European Turkey and around Istanbul. I Sect.Molium andScorodon. — J. Fac. Pharm. Istanbul19: 25–36.

    Google Scholar 

  • —, 1984: Cytotaxonomic studies on the genusAllium in European Turkey and around Istanbul III Sect.Allium and sectt.Melanocrommyum. — J. Fac. Pharm.20: 43–65.

    Google Scholar 

  • Pastor, J., 1982: Karyology ofAllium species from the Iberian Peninsula. — Phyton (Horn, Austria)22: 171–200.

    Google Scholar 

  • —, 1985: Bulb structure in some species ofAllium (Liliaceae) of Iberian Peninsula. — Ann. Musei Goulandris7: 249–261.

    Google Scholar 

  • Peffley, E., 1986: Evidence for chromosomal differentiation ofAllium fistulosum andA. cepa. — J. Amer. Soc. Hort. Sci.111: 126–129.

    Google Scholar 

  • Pistrick, K., 1992: Phenological variability in the genusAllium L. — InHanelt, P., Hammer, K., Knüpffer, H., (Eds): The genusAllium — taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben, Germany, June 11–13, 1991, pp. 243–249. — Gatersleben: IPK.

    Google Scholar 

  • Poggio, L., Burghardt, A. D., Hunziker, J. H., 1989: Nuclear DNA variation in diploid and polyploid taxa ofLarrea (Zygophyllaceae). — Heredity63: 321–328.

    Google Scholar 

  • Price, H. J., 1976: Evolution of DNA content in higher plants. — Bot. Rev.42: 27–52.

    Google Scholar 

  • Raamsdonk, L. W. D., van De Vries, T., 1992: Biosystematic studies inAllium L. sectionCepa. — Bot. J. Linn. Soc.109: 131–143.

    Google Scholar 

  • —, 1992: Crossing experiments inAllium L. sectionCepa. — Bot. J. Linn. Soc.109: 293–303.

    Google Scholar 

  • Raina, S. N., 1990: Genome organization and evolution in the genusVicia. — InKawano, S., (Ed.): Biological approaches and evolutionary trends in plants, pp. 183–201. — London: Academic Press.

    Google Scholar 

  • —, 1983: DNA variation between and within chromosome complements ofVicia species. — Heredity51: 335–346.

    Google Scholar 

  • —, 1986: Nuclear DNA variation inTephrosia. — Genetics69: 27–33.

    Google Scholar 

  • Ranjekar, P. K., Pallotta, D., Lafontaine, J. G., 1978: Analysis of plant genomes V. Comparative study of molecular properties of DNAs of sevenAllium species. — Biochem. Genet.16: 957–970.

    PubMed  Google Scholar 

  • Rothfels, K., Sexsmith, E., Heimburger, M., Kruse, M. O., 1966: Chromosome size and DNA content of species ofAnemone L. and related genera (Ranunculaceae). — Chromosoma20: 54–74.

    Google Scholar 

  • Samoylov, A., Klaas, M., Hanelt, P., 1995: Use of chloroplast DNA polymorphisms for the phylogenetic study of the subgeneraAmerallium andBromatorrhiza (genusAllium). — Feddes Repert.106: 161–167.

    Google Scholar 

  • Stearn, W. T., 1946: Notes on the genusAllium in the Old World. — Herbertia11: 11–34.

    Google Scholar 

  • —, 1992: How many species ofAllium are known? — Kew Mag.9: 180–181.

    Google Scholar 

  • Tardif, B., Morisset, R., 1991: Chromosomal C-band variation inAllium schoenoprasum (Liliaceae) in eastern North America. — Pl. Syst. Evol.174: 125–137.

    Google Scholar 

  • Thompson, K., 1990: Genome size and germination temperature in herbaceous angiosperms. — Evol. Trends Pl.4: 113–116.

    Google Scholar 

  • Traub, H. P., 1968: The subgenera, sections and subsections ofAllium. — Pl. Life24: 147–163.

    Google Scholar 

  • Ulrich, I., Fritz, B., Ulrich, W., 1988: Application of DNA fluorochromes for flow cytometric DNA analysis of plant protoplasts. — Pl. Sci.55: 151–158.

    Google Scholar 

  • Vakhtina, L. I., Zakirova, R. O., Vakhtin, Y. B., 1977: Interspecific differences in DNA contents and taxonomically valid characters inAllium L. (Liliaceae). — Bot. Zhurn. (Moscow & Leningrad)62: 667–684. (In Russian.)

    Google Scholar 

  • Van't Hof, J., 1965: Relationship between mitotic cycle duration, S period duration and average rate of DNA synthesis in the root meristem cells of several plants. — Exp. Cell. Res.39: 45–58.

    Google Scholar 

  • Verma, R. S., Lin, M. S., 1979: The duration of DNA synthetic (S) period inZea mays: a genetic control. — Theor. Appl. Genet.54: 277–282.

    Google Scholar 

  • Vosa, C. G., 1976a: Heterochromatic patterns inAllium I. The relationship between the species of theCepa group and its allies. — Heredity36: 383–392.

    Google Scholar 

  • —, 1976b: Heterochromatic patterns inAllium II. Heterochromatic variation in species of thePaniculatum group. — Chromosoma57: 119–133.

    Google Scholar 

  • De Vries, J. N., Jongerius, M. C., 1988: Interstitial C-bands on the chromosomes ofAllium species from the sectionCepa. — In: Proceedings of Eucarpia 4thAllium Symposium, Sept. 6–9, 1988, pp. 71–78. — Wellesbourne, U. K.: Inst. Hortic. Res.

    Google Scholar 

  • Waldherr, M., 1992: Genomgrößen in der GattungAllium. — Diploma Thesis, University of Vienna.

  • Walters, T. W., 1992: Rapid nuclear DNA content estimation forAllium spp. using flow cytometry. —Allium Improv. Newslett.2: 4–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohri, D., Fritsch, R.M. & Hanelt, P. Evolution of genome size inAllium (Alliaceae). Pl Syst Evol 210, 57–86 (1998). https://doi.org/10.1007/BF00984728

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984728

Key words

Navigation