Skip to main content
Log in

Standard karyotypes ofAegilops uniaristata, Ae. mutica, Ae. comosa subspeciescomosa andheldreichii (Poaceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

C-banding patterns and polymorphisms were analyzed in several accessions of the diploidAegilops speciesAe. uniaristata, Ae. mutica, andAe. comosa subsp.comosa and subsp.heldreichii, and standard karyotypes of these species were established. Variation in C-band size and location was observed between different accessions, but did not prevent chromosome identification. One accession ofAe. uniaristata was homozygous for whole-arm translocations involving chromosomes 1N and 5N. The homoeologous relationships of these chromosomes were established by comparison of chromosome morphologies and C-banding patterns to other diploidAegilops species with known chromosome homoeology. In addition, in situ hybridization analysis with a 5S rDNA probe was used to identify homoeologous groups 1 and 5 chromosomes. The present analysis permitted the assignment of allAe. mutica, comosa subsp.comosa, andAe. comosa subsp.heldreichii chromosomes, and three of the sevenAe. uniaristata chromosomes according to their homoeologous groups. The data presented will be useful analyzing genome differentiation in polyploidAegilops species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chennaveeraiah, M. S., 1960: Karyomorphologic and cytotaxonomic studies inAegilops. — Acta Horti Gothob.23: 85–178.

    Google Scholar 

  • Dvorak, J., Zhang, H.-B., Kota, R. S., 1989: Organization and evolution of the 5S rRNA gene family in wheat and related species. — Genome32: 1003–1016.

    Google Scholar 

  • Feldman, M., Strauss, I., Vardi, A., 1979: Chromosome pairing and fertility of F1 hybrids ofAegilops longissima andAe. searsii. — Canad. J. Genet. Cytol.21: 261–272.

    Google Scholar 

  • Friebe, B., Gill, B. S., 1996: Chromosome banding and genome analysis in diploid and cultivated polyploid wheats. — InJauhar, P. P., (Ed.): Methods of genome analysis in plants, pp. 39–60. — Boca Raton: CRC Press.

    Google Scholar 

  • —, 1992a: C-banding polymorphisms in several accessions ofTriticum tauschii (Aegilops squarrosa). — Genome35: 192–199.

    Google Scholar 

  • —, 1992b: C-banding pattern and polymorphism ofAegilops caudata and chromosomal constitutions of the amphiploidT. aestivum-Ae. caudata and six derived chromosome addition lines. — Theor. Appl. Genet.83: 589–596.

    Google Scholar 

  • —, 1993: Standard karyotype ofTriticum longissimum and its cytogenetic relationship withT. aestivum. — Genome36: 731–742.

    Google Scholar 

  • —, 1995a: Standard karyotype ofTriticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. — Theor. Appl. Genet.90: 150–156.

    Google Scholar 

  • Friebe, B., Jiang, J., Tulleen, N., 1995b: Standard karyotype ofTriticum searsii and its relationship with other S-genome species and common wheat. — Theor. Appl. Genet.91: 248–255.

    Google Scholar 

  • —, 1995c: Detection of 5S rDNA and other repeated DNA on supernumerary B chromosomes ofAegilops species (Poaceae). — Pl. Syst. Evol.196: 131–139.

    Google Scholar 

  • Gerlach, W. L., Dyer, T. A., 1980: Sequence organization of the repeated units in the nucleus of wheat which contains 5S-rRNA genes. — Nucleic Acids Res.8: 4851–4865.

    Google Scholar 

  • Gill, B. S., 1981: Evolutionary relationships based on heterochromatin bands in six species of theTriticinae. — J. Heredity72: 391–394.

    Google Scholar 

  • —, 1974: Giemsa C-banding and the evolution of wheat. — Proc. Natl. Acad. Sci. USA 71: 4086–4090.

    Google Scholar 

  • —, 1991: Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). — Genome24: 830–839.

    Google Scholar 

  • Hammer, K., 1980: Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten:Aegilops L. — Kulturpflanze28: 33–180.

    Google Scholar 

  • —, 1987: Resistenzmerkmale und Reproduktionssystem als Indikatoren für evolutionäre Tendenzen in der GattungAegilops L. — Biol. Zentralbl.106: 273–282.

    Google Scholar 

  • —, 1993: Variation in breeding systems in theTriticinae. — InDamania, A. B., (Ed.): Biodiversity and wheat improvement, pp. 51–58. — Chichester, NY: Wiley.

    Google Scholar 

  • Jiang, J., Gill, B. S., 1994: Different species-specific chromosome translocations inTriticum timopheevii andT. turgidum support the diphyletic origin of polyploid wheats. — Chromosome Res.2: 59–64.

    Google Scholar 

  • Kihara, H., 1937: Genomanalyse beiTriticum undAegilops. VII. Kurze Übersicht über die Ergebnisse der Jahre 1934–36. — Mem. Coll. Agr. Kyoto Imp. Univ. No.42 (Genet. Ser. No. 7), 1–61.

    Google Scholar 

  • Mochizuki, A., 1957: B chromosomes inAegilops mutica Boiss. — Wheat Inform. Serv.5: 9–11.

    Google Scholar 

  • —, 1960: A note on the B chromosomes in natural population ofAegilops mutica Boiss. in central Turkey. — Wheat Inform. Serv.11: 31.

    Google Scholar 

  • Mukai, Y., Endo, T. R., Gill, B. S., 1990: Physical mapping of the 5S rRNA multigene family in common wheat. — J. Heredity81: 290–295.

    Google Scholar 

  • Ohta, S., 1991: Phylogenetic relationship ofAegilops mutica Boiss. with the diploid species of congenericAegilops-Triticum complex, based on the new method of genome analysis using its B-chromosomes. — Mem. Coll. Agric., Kyoto Univ. No.137: 1–116.

    Google Scholar 

  • Riley, R., Chapman, V., Johnson, R., 1968a: The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. — Genet. Res.12: 198–219.

    Google Scholar 

  • Riley, R., Chapman, V., Johnson, R., 1968b: Introduction of yellow rust resistance ofAegilops comosa into wheat by genetically induced homoeologous recombination. — Nature217: 383–384.

    Google Scholar 

  • Simchen, G., Zarchi, Y., Hillel, J., 1971: Supernumerary chromosomes in the second outbreeding species of the wheat group. — Chromosoma33: 63–69.

    Google Scholar 

  • Teo, S. B., Hutchinson, J., 1983: Interspecific variation in C-banded chromosomes of diploidAegilops species. — Theor. Appl. Genet.65: 31–40.

    Google Scholar 

  • —, 1983: Intraspecific variation in C-banded chromosomes ofAegilops comosa andAe speltoides. — Theor. Appl. Genet.65: 343–348.

    Google Scholar 

  • Van Slageren, M. W., 1994: Wild wheats: a monograph ofAegilops L. andAmblyopyrum (Jaub. & Spach)Eig (Poaceae). — Wageningen Agricultural University Papers94-7: 512.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friebe, B., Badaeva, E.D., Kammer, K. et al. Standard karyotypes ofAegilops uniaristata, Ae. mutica, Ae. comosa subspeciescomosa andheldreichii (Poaceae). Pl Syst Evol 202, 199–210 (1996). https://doi.org/10.1007/BF00983382

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00983382

Key words

Navigation