Skip to main content
Log in

Chemical mediation of behavior in hermit crabs: Alarm and aggregation cues

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Field studies with three common local species of hermit crabs,Clibanarius vittatus, Pagurus longicarpus, andPagurus pollicaris, showed that these crabs responded behaviorally to chemicals originating from crushed conspecifics. Hermit crabs are attracted specifically and in a manner similar to previously reported crab responses to odors from dead gastropods. Responses byC. vittatus to both kinds of odor are of three types: (1) aggregation/shell investigation responses (previously reported for odors from dead gastropods), characterized by increased locomotor activity, investigation of shells in the vicinity, and switching into empty shells; (2) alarm responses, in which crabs flee the area; and (3) withdrawal responses, in which crabs pull into their shells and do not come out. Studies withC. vittatus showed that the stimulatory chemicals originate from hemolymph, are less than 500 D, adsorb to octadecyl silica, and are recovered by elution with 20% methanol. Responses ofC. vittatus are dependent upon crab size, type of shell occupied, and shell fit. Chemicals originating from dead conspecifics provide a forum for shell acquisition by crabs in relatively small shells and alarm by crabs in relatively large shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, P. 1980. Resource partitioning and interspecific competition in a tropical hermit crab community.Oecologia 46:365–379.

    Google Scholar 

  • Atema, J., andBurd, G.D. 1975. A field study of chemotactic responses of the marine mud snail,Nassarius obsoletus.J. Chem. Ecol. 1(2):243–251.

    Google Scholar 

  • Atema, J., andStenzler, D. 1977. Alarm substance of the marine mud snailNassarius obsoletus: Biological characterization and possible evolution.J. Chem. Ecol. 3(2): 173–187.

    Google Scholar 

  • Bach, C., Hazlett, B., andRittschof, D. 1976. Effects of interspecific competition on fitness of the hermit crabClibanarius tricolor.Ecology 57(3):579–586.

    Google Scholar 

  • Bertness, M.D. 1981. The influence of shell-type on hermit crab growth rate and clutch size (Decapoda, Anomura).Crustaceana 40:197–205.

    Google Scholar 

  • Chase, I.D., Weissburg, M., andDewitt, T.H. 1988. The vacancy chain process: A new mechanism of resource distribution in animals with application to hermit crabs.Anim. Behav. 36:1265–1274.

    Google Scholar 

  • Childress, J.R. 1972. Behavioral ecology and fitness theory in a tropical hermit crab.Ecology 53:960–964.

    Google Scholar 

  • Fotheringham, N. 1976. Effects of shell stress on the growth of hermit crabs.J. Exp. Mar. Biol. Ecol. 23:655–671.

    Google Scholar 

  • Gilchrist, S., andAbele, L.G. 1984. Effects of sampling method on the estimation of population parameters in hermit crabs.J. Crust. Biol. 4(4):645–654.

    Google Scholar 

  • Hazlett, B.A. 1966. Social behavior of the Paguridae and Diogenidae of Curacao.Studies of Fauna of Curacao and Other Caribbean Insects 23:1–43.

    Google Scholar 

  • Hazlett, B.A. 1970a. Interspecific shell fighting in three sympatric species of hermit crabs in Hawaii.Pacif. Sci. 24:472–482.

    Google Scholar 

  • Hazlett, B.A. 1970b. Tactile stimuli in the social behavior ofPagurus bernhardus (Decapoda: Paguridae).Behaviour 34:20–48.

    Google Scholar 

  • Hazlett, B.A. 1972. Shell fighting and sexual behavior in the hermit crab genera Paguristes and Calcinus, with comments onPagurus.Bull. Marine Sci. 22:806–823.

    Google Scholar 

  • Hazlett, B.A. 1979. Individual distance in Crustacea: IV Distance and dominance hierarchies inPagurus pollicaris.Mar. Behav. Physiol. 6:225–242.

    Google Scholar 

  • Hazlett, B.A. 1981. The behavioral ecology of hermit crabs.Annu. Rev. Ecol. Syst. 12:1–22.

    Google Scholar 

  • Hazlett, B.A. 1983. Interspecific negotiations: Mutual gain in the exchanges of a limiting resource.Anim. Behav. 31:160–163.

    Google Scholar 

  • Hazlett, B.A. 1989. Mating success of male hermit crabs in shell generalist and shell specialist species.Behav. Ecol. Sociobiol. 25:119–128.

    Google Scholar 

  • Hazlett, B.A. 1990. Source and nature of disturbance-chemical system in crayfish.J. Chem. Ecol. 16(7):2263–2275.

    Google Scholar 

  • Hazlett, B.A., andBaron, L.C. 1989. Influence of shells on mating behavior in the hermit crabCalcinus tibicen.Behav. Ecol. Sociobiol. 24:369–376.

    Google Scholar 

  • Hazlett, B.A., andHerrnkind, W. 1980. Orientation to shell events by the hermit crabClibanarius vittatus (Bosc) (Decapoda, Saguridra).Crustaceana 89:311–314.

    Google Scholar 

  • Herrnkind, W., Wilber, P., andLoftin, J. 1981. Shells travelling from snails to hermit crabs: A rapid transit system?Am. Zool. 21(4):991.

    Google Scholar 

  • Howe, N.R., andSheikh, Y.M. 1975. Anthopleurine: A sea anemone alarm pheromone.Science 189:386–388.

    Google Scholar 

  • Hrbacek, J. 1950. On the flight reaction of tadpoles of the common toad caused by chemical substances.Experientia 6:100–101.

    Google Scholar 

  • Kellogg, C.W. 1976. Gastropod shells: A potentially limiting resource for hermit crabs.J. Exp. Mar. Biol. Ecol. 22:101–111.

    Google Scholar 

  • Kratt, C.M., andRittschof, D. 1991. Peptide attraction of hermit crabsClibanarius vittatus Bosc: Roles of enzymes and substrates.J. Chem. Ecol. 17(12):2347–2365.

    Google Scholar 

  • Kuris, A.M., andBrody, M.S. 1976. Use of principal components analysis to describe the snail shell resource for hermit crabs.J. Exp. Mar. Biol. Ecol. 22:69–77.

    Google Scholar 

  • Lepore, M., andGilchrist, S. 1988. Hermit crab attraction to gastropod predation sites.Am. Zool. 28:93A.

    Google Scholar 

  • Liszka, D., andUnderwood, A.J. 1990. An experimental design to determine preferences for gastropod shells by a hermit-crab.J. Exp. Mar. Biol. Ecol. 137:47–62.

    Google Scholar 

  • McLean, R.B. 1974. Direct shell acquisition by hermit crabs from gastropods.Experientia 30(2):206–208.

    Google Scholar 

  • McLean, R.B. 1975. A Description of a Marine Benthic Faunal Habitat Web, Ph.D. thesis. Florida State University, Tallahassee.

    Google Scholar 

  • McLean, R.B. 1983. Gastropod shells: A dynamic resource that helps shape benthic community structure.J. Exp. Mar. Biol. Ecol. 69:151–174.

    Google Scholar 

  • Pfeiffer, W. 1963. Alarm substances.Experientia 19:113–123.

    Google Scholar 

  • Provenzano, A.J., Jr. 1960. Notes on Bermuda hermit crabs (Crustacea: Anomura).Bull. Mar. Sci. 10:117–124.

    Google Scholar 

  • Reese, E.S. 1962. Shell selection behaviour of hermit crabs.Anim. Behav. 10:347–360.

    Google Scholar 

  • Reese, E.S. 1963. The behavioral mechanisms underlying shell selection by hermit crabs.Behaviour 21:79–126.

    Google Scholar 

  • Reese, E.S. 1989. Orientation behavior of butterflyfishes (family Chaetodontidae) on coral reefs: Spatial learning of route specific landmarks and cognitive maps.Environ. Biol. Fish. 25: 79–86.

    Google Scholar 

  • Rittschof, D. 1980a. Chemical attraction of hermit crabs and other attendants to gastropod predation sites.J. Chem. Ecol. 6(1): 103–118.

    Google Scholar 

  • Rittschof, D. 1980b. Enzymatic production of small molecules attracting hermit crabs to simulated gastropod predation sites.J. Chem. Ecol. 6(3):665–675.

    Google Scholar 

  • Rittschof, D., Kratt, C.M., andClare, A.S. 1990. Gastropod predation sites: The roles of predator and prey in chemical attraction of the hermit crabClibanarius vittatus (Bosc).J. Mar. Biol. Assoc. U.K. 70:583–596.

    Google Scholar 

  • Schiffmann, E. 1982. Leukocyte chemotaxis.Annu. Rev. Physiol. 44:553–568.

    Google Scholar 

  • Snyder, N.F.R. 1967. An alarm reaction of aquatic gastropods to intraspecific extract.Cornell Univ. Agr. Exp. Sta. Mem. 403.

  • Snyder, N.F.R., andSnyder, H.A. 1970. Alarm response ofDiadema antillarum.Science 168:276–278.

    Google Scholar 

  • Sokal, R.R., andRohlf, F.J. 1981. Biometry. W.H. Freeman, San Francisco.

    Google Scholar 

  • Spight, T.N. 1977. Availability and use of shells by intertidal hermit crabs.Biol. Bull. 152:120–133.

    Google Scholar 

  • Spight, T.N. 1985. Why small hermit crabs have large shells.Res. Pop. Ecol. 27(1):39–54.

    Google Scholar 

  • Stenzler, D., andAtema, J. 1976. Alarm response of the marine mud snail,Nassarius obsoletus: Specificity and behavioral priority.J. Chem. Ecol. 3(2): 159–171.

    Google Scholar 

  • Stenzler, D., andAtema, J. 1977. Alarm response of the marine mud snail,Nassarius obsoletus: Specificity and behavioral priority.J. Chem. Ecol. 3(2):159–171.

    Google Scholar 

  • Vance, R.R. 1972. Competition and mechanism of coexistence in three sympatric species of intertidal hermit crabs.Ecology 53:1062–1074.

    Google Scholar 

  • Walpole, R.E. 1974. Introduction to Statistics. Macmillan, New York.

    Google Scholar 

  • Wilber, T.P., Jr. 1989. Associations between gastropod shell characteristics and egg production in the hermit crabPagurus longicarpus.Oecologia 81:6–15.

    Google Scholar 

  • Wilber, T.P., Jr. 1990. Influence of size, species and damage on shell selection by the hermit crabPagurus longicarpus.Mar. Biol. 104:31–39.

    Google Scholar 

  • Wilber, T.P., Jr., andHerrnkind, W. 1982. Rate of new shell acquisition by hermit crabs in a salt marsh habitat.J. Crust. Biol. 2(4):588–592.

    Google Scholar 

  • Wilber, T.P., Jr., andHerrnkind, W.F. 1984. Predaceous gastropods regulate new-shell supply to salt marsh hermit crabs.Mar. Biol. 79:145–150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rittschof, D., Tsai, D.W., Massey, P.G. et al. Chemical mediation of behavior in hermit crabs: Alarm and aggregation cues. J Chem Ecol 18, 959–984 (1992). https://doi.org/10.1007/BF00980056

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00980056

Key Words

Navigation