Skip to main content
Log in

Changes of synaptosomal energy metabolism induced by hypoxia during aging

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Synaptosomes were isolated from the motor area of the cerebral cortex of normoxic or hypoxic (PaO2=17–19 mmHg, for 15 min) beagle dogs of different ages. Synaptosomes were incubated in Krebs-Henseleit-Hepes buffer (for 10 min at 24°C) and the energetic state was defined by: the balance of the labile phosphates (ATP, ADP, AMP, and creatine phosphate); the respiratory rate; the redox state of the intramitochondrial NAD-couple. By the present experimental model, it is possible to evaluate the potential damage (induced by the “in vivo” hypoxic insult) that synaptosomes cannot reverse under optimal incubation. Aging affected the phosphorylation state of the post-hypoxic incubated synaptosomes. The oxygen consumption rate was quite similar in the synaptosomal fractions from the motor area of hypoxic beagle dogs of different ages, but the cytochromec anda contents were lower in the preparations from hypoxic older brains. In dogs of different ages, hypoxia always lowered the respiration of the synaptosomes, but aging affected the oxygen consumption rates only in post-hypoxic synaptosomes incubated with succinate. The synaptosomal energetic state was defined also by the redox state of the intramitochondrial NAD-couple (ΔGox-red) and the phosphorylation state of adenine nucleotide system (ΔGATP). The free-energy change (ΔΔG) for the coupled reactions was calculated, too. In synaptosomes isolated from the cerebral cortex of dogs submitted to hypoxia, the equilibrium (calculated for the mitochondrial electron transfer chain and the phosphorylation of adenine nucleotides) was markedly altered as function of aging. The extensive age-related ΔΔG changes were largely supported by alteration of the phosphorylation state of adenine nucleotides, rather than by modification of the redox state of the electron transfer chain.

All present data suggest that the bioenergetic derangement caused by hypoxia and aging may be interpreted also in terms of modification of the biophysical and biochemical mechanisms involving the mitochondrial membranes and particularly the inner mitochondrial membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachelard, H. S., Lewis, L. D., Pontén, V., and Siesjö, B. K. 1974. Mechanisms activating glycolysis in the brain in arterial hypoxia. J. Neurochem. 22:395–401.

    Google Scholar 

  2. Bartlett, M. S. 1937. Properties of sufficiency and statistical tests. Proc. Roy. Soc. 160:268–279.

    Google Scholar 

  3. Benzi, G., Arrigoni, E., Manzo, L., De Bernardi, M., Ferrara, A., Panceri, P., and Berte', F. 1973. Estimation of changes induced by drugs in cerebral energy-coupling processes “in situ” in the dog. J. Pharm. Sci. 62:758–764.

    Google Scholar 

  4. Benzi, G., Arrigoni, E., Dagani, F., Pastoris, O., Villa, R. F., and Agnoli, A. 1978. Cerebral energy state during or after hypoxia and complete or incomplete ischemia. J. Appl. Physiol. 45:312–319.

    Google Scholar 

  5. Benzi, G., Arrigoni, E., Agnoli, A., Raimondo, S., Fulle, D., Pastoris, O., Curti, D., and Villa, R. F. 1982. Influence of age upon cerebral metabolic changes induced by acute hypoxia on the synaptosomes from dog brain. Exp. Geront. 17:19–32.

    Google Scholar 

  6. Benzi, G., Arrigoni, E., Pastoris, O., Villa, R. F., Dossena, M., Agnoli, A., and Giuffrida, A. M. 1982. Drug action on the metabolic changes induced by acute hypoxia on synaptosomes from the cerebral cortex. J. CBF metab. 1:229–239.

    Google Scholar 

  7. Benzi, G., and Villa, R. F. 1976. Adenyl cyclase system and cerebral energy state. J. Neurol. Neurosurg. Psychiatry 39:77–83.

    Google Scholar 

  8. Bernt, E., Bergmeyer, H. U., and Möllering, H. 1974. Creatine. Vol. 4, pages 1772–1776, in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Verlag Chemie/Academic Press, New York, London.

    Google Scholar 

  9. Booth, R. F., and Clark, J. B. 1978. A rapid method for the preparation of relatively pure, metabolically competent synaptosomes from rat brain. Biochem. J. 176:365–370.

    Google Scholar 

  10. Bradford, H. F. 1969. Respiration in vitro of synaptosomes from mammalian cerebral cortex. J. Neurochem. 16:675–684.

    Google Scholar 

  11. Czok, R., and Lamprecht, W. 1974. Pyruvate, phosphoenolpyruvate andd-glycerate-2-phosphate. Vol. 3, pages 1446–1451, in Bergmeyer, H. U. (ed.). Methods of Enzymatic Analysis, Verlag Chemie/Academic Press, New York, London.

    Google Scholar 

  12. De Robertis, E., Pellegrino de Iraldi, A., de Lores Arnaiz, G. R., and Salganicoff, L. 1962. Cholinergic and non-cholinergic nerve endings in rat brain. J. Neurochem. 9:23–35.

    Google Scholar 

  13. Dutton, P. L., and Wilson, D. F. 1974. Redox potentiometry in mitochondrial photosynthetic bioenergetics. Biochim. Biophys. Acta 346:165–212.

    Google Scholar 

  14. Erecinska, M., and Wilson, D. F. 1978. Homeostatic regulation of cellular energy metabolism. TIBS 3:219–223.

    Google Scholar 

  15. Erecinska, M., Kula, T., and Wilson, D. F. 1978. Regulation of energy metabolism. Evidence against a primary role of adenine nucleotide translocase. FEBS Lett. 87:139–144.

    Google Scholar 

  16. Erecinska, M., Wilson, D. F., and Nishiki, K. 1978. Homeostatic regulation of cellular energy metabolism. Experimental characterization and fit to a model. Am. J. Physiol. 234:C82-C89.

    Google Scholar 

  17. Folbergrova', J., MacMillan, V., and Siesjö, B. K. 1972. The effect of moderate and marked hypercapnia upon the energy state and upon the cytoplasmatic NADH/NAD+ ratio of the rat brain. J. Neurochem. 19:2497–2505.

    Google Scholar 

  18. Folbergrova', J., MacMillan, V., and Siesjö, B. K. 1972. The effect of hypercapnic acidosis upon some glycolytic and Krebs cycle-associated intermediates in the rat brain. J. Neurochem. 19:2507–2517.

    Google Scholar 

  19. Gray, E. G., and Whittaker, V. P. 1962. The isolation of nerve endings from brain. An electron-microscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. 26:79–87.

    Google Scholar 

  20. Grossman, R. G., and Williams, V. F. 1971. Electrical activity and ultrastructure of cortical neurones and synapses in ischemia. Pages 61–75, in Meldrum (ed.), Brain Hypoxia, Spastic International Medical Publications, Lippincott, Philadelphia.

    Google Scholar 

  21. Gutmann, I., and Wahlefeld, A. W. 1974. L-(+)-Lactater determination with lactate dehydrogenase and NAD. Vol. 3, pages 1464–1468, in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Verlag Chemie/Academic Press, New York, London.

    Google Scholar 

  22. Hess, H. H., and Derr, J. E. 1975. Assay of inorganic and organic phosphorus in the 0.1–5 nanomole range. Anal. Biochem. 63:607–613.

    Google Scholar 

  23. Jaworek, D., Gruber, W., and Bergmeyer, H. U. 1974. Adenosine-5′-disphosphate and adenosine-5′-monophosphate. Vol. 4, pages 2127–2131, in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Verlag Chemie/Academic Press, New York, London.

    Google Scholar 

  24. Krebs, H. A., Mellanby, J., and Williamson, D. H. 1962. The equilibrium constant of the 3-hydroxybutyric dehydrogenase system. Biochem. J. 82:96–98.

    Google Scholar 

  25. Lamprecht, W., and Trautschold, I. 1974. ATP: determination with hexokinase and glucose-6-phosphate dehydrogenase. Vol. 4, pages 2101–2110, in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Verlag Chemie/Academic Press, New York, London.

    Google Scholar 

  26. Lamprecht, W., Stein, P., Heinz, F., and Weisser, H. 1974. Creatine phosphate. Vol. 4, pages 1777–1781, in Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, Verlag Chemie/Academic Press, New York, London.

    Google Scholar 

  27. Lowry, O. H., Rosebrough, M. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenoi reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  28. Nohl, H. 1979. Influence of age on thermotropic kinetics of enzymes involved in mitochondrial energy metabolism. Z. Geront. 12:9–18.

    Google Scholar 

  29. Nohl, H., and Krämer, R. 1980. Molecular basis of age-dependent changes in the activity of adenine nucleotide translocase. Mech. Age. Dev. 14:137–144.

    Google Scholar 

  30. Nohl, H. 1982. Age-dependent changes in the structure-function correlation of ADP/ATP-translocating mitochondrial membranes. Gerontology 28:354–359.

    Google Scholar 

  31. Rafalowska, U., Erecinska, M., and Wilson, D. F. 1980. Energy metabolism in rat brain synaptosomes from nembutalanesthetized and nonanesthetized animals. J. Neurochem. 34:1380–1386.

    Google Scholar 

  32. Scherer, B., and Klingenberg, M. 1974. Demonstration of the relationship between the adenine nucleotide carrier and the structural changes of mitochondria as induced by adenosine-5′-diphosphate. Biochemistry 13:161–170.

    Google Scholar 

  33. Siesjö, B. K. 1978. Nitrous oxide. Pages 242–244, in Siesjö, B. K. (ed.), Brain Energy Metabolism, J. Wiley & Sons, Chichester.

    Google Scholar 

  34. Siesjö, B. K., and Nilsson, L. 1971. The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentration in the rat brain. Scand. J. Clin. Lab. Invest. 27:83–96.

    Google Scholar 

  35. Siesjö, B. K., and Zwetnow, N. N. 1970. The effect of hypovolemic hypotension on extra- and intra-cellular acid-base parameters and energy metabolites in the rat brain. Acta Physiol. Scand. 79:114–124.

    Google Scholar 

  36. Silver, I. A. 1973. Local PO2 in relation to intracellular pH, cell membrane potential and potassium leakage in hypoxia and shock. Adv. Exp. Biol. Med. 37A:223–231.

    Google Scholar 

  37. Veech, R. L., Harris, R. L., Veloso, D., and Veech, E. H. 1973. Freeze-blowing: a new technique for the study of brain in vivo. J. Neurochem. 20:183–188.

    Google Scholar 

  38. Williamson, D. H., Mellanby, J., and Krebs, H. A. 1962. Enzymatic determination of D-(−)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem. J. 82:90–96.

    Google Scholar 

  39. Williamson, D. H., Lund, P., and Krebs, H. A. 1967. The redox state of the free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103:514–527.

    Google Scholar 

  40. Wilson, D. F., Stubbs, M., Oshino, N., and Erecinska, M. 1974. Thermodynamic relationships between the mitochondrial oxidation-reduction reactions and cellular ATP-levels in ascites tumor cells and perfused rat liver. Biochemistry 13:5305–5311.

    Google Scholar 

  41. Wilson, D. F., Stubbs, M., Veech, R. L., Erecinska, M., and Krebs, H. A. 1974. Equilibrium relations between the oxidation-reduction reactions and the adenosine triphosphate synthesis in suspensions of isolated liver cells. Biochem. J. 140:57–64.

    Google Scholar 

  42. Wilson, D. F., Owen, C. S., and Holian, A. 1977. Control of mitochondrial respiration. A quantitative evaluation of the roles of cytochrome c and oxygen. Arch. Biochem. Biophys. 182:749–762.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special Issue Dedicated to Dr. Abel Lajtha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benzi, G., Giuffrida, A.M. Changes of synaptosomal energy metabolism induced by hypoxia during aging. Neurochem Res 12, 149–157 (1987). https://doi.org/10.1007/BF00979531

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00979531

Key words

Navigation