Skip to main content
Log in

Amino acid neurotransmitter alterations in three sublines of Rb mice differing by their susceptibility to audiogenic seizures

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The levels of inhibitory amino acids (Tau, Gly), or excitatory amino acids (Glu, Asp) and Gln, precursor of GABA, have been determined, under resting conditions, in 17 brain areas of 3 sublines of inbred Rb mice displaying different responses to an acoustic stimulus. Rb1 mice were clonictonic seizure-prone, Rb2 mice were clonic seizure-prone and Rb3 mice were seizure resistant. Profile of distribution in the brain of each one of these amino acids differed. Maximum to minimum level ratio was higher for Tau (3.8) than for Glu or Asp or Gln (2). The level of Gly was similar in 13 out of the 17 areas examined. Multiple inter-subline differences were recorded for each amino acid. These differences have been analyzed considering the seizure susceptibility or severity of the three Rb sublines. Common lower levels (approximately −20%: Rb1/Rb3, Rb2/Rb3) of Gln in Temporal Cortex may be implicated in seizure susceptibility. Seirure severity (Rb1/Rb2) seems to correlate, in some areas, with additional lower amounts of GABA already reported and, to a lower extent, of Asp (−19% in striatum, inferior colliculus and cerebellum), of Tau and Gly; a tendency for a rise in Gln content was observed in certain others (10–20% in olfactory bulb, thalamus, hypothalamus, substantia nigra, and frontal, temporal and occipital cortex). The data and correlations recorded provide guidelines for further investigations for synaptosomal and metabolic alterations in the three sublines of the same strain of Rb mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GABA:

4-aminobutyrate

Tau:

taurine

Gly:

glycine

Asp:

aspartate

Glu:

glutamate

Gln:

glutamine

GEPR:

genetically epilepsy-prone rat

OB:

olfactory bulbs

OT:

olfactory tubercles

Sr:

striatum

Se:

septum

Hy:

hypothalamus

Hi:

hippocampus

Th:

thalamus

A:

amygdala

SC:

superior colliculus

IC:

interior colliculus

SN:

substantia nigra

FCx:

frontal cortex

TCx:

temporal cortex

OCx:

occipital cortex

C:

cerebellum

P:

pons

Ra:

raphe

References

  1. Dailey J. W., Reigel C. E., Mishra P. K., and Jobe P. C. 1989. Neurobiology of seizure predisposition in the genetically epilepsyprone rat. Epilepsy Res., 3:3–17.

    Google Scholar 

  2. Clement J., Simler S., Ciesielski L., Gobaille S., and Mandel P. 1989. Involvement of brain biogenic amines metabolism in the susceptibility and severity of audiogenic seizures in three sublines of Rb mice differing by their response to acoustic stimulations. Biogenic Amines 6, 95–104.

    Google Scholar 

  3. Busnel R. G. and Lehmann A. 1960. New pharmacodynamic data relative to the audiogenic crisis in the mouse. J. Physiol. (Paris) 52, 37–38.

    Google Scholar 

  4. Consroe P., Picchioni A., and Chin L. 1979. Audiogenic seizure-susceptible rats. Fed. Proc. 38, 2411–2416.

    Google Scholar 

  5. Jobe P. C., Picchioni A. L., and Chin L. 1973. Role of brain norepinephrine on audiogenic seizure in the rat. J. Pharmacol. Exp. Ther. 184, 1–10.

    Google Scholar 

  6. Maxson S. C., and Cowen J. S. 1976. Electroencephalographic correlates of the audiogenic seizure response of inbred mice. Physiol. Behav. 16, 623–629.

    Google Scholar 

  7. Jobe P. C., Dailey J. W., and Reigel C. E. 1986. Neurobiology of seizure predisposition — the genetically epilepsy-prone rat. II. Noradrenergic and serotonergic determinants of seizure susceptibility and severity in genetically epilepsy-prone rats. Life Sci. 39, 775–782.

    Google Scholar 

  8. Ciesielski L., Simler S., Clement J., and Mandel P. 1987. Effect of repeated convulsive seizures on brain γ-aminobutyric acid metabolism in three sublines of mice differing by their response to acoustic stimulations. J. Neurochem. 49, 220–226.

    Google Scholar 

  9. Paulsen R. E., Odden E., and Fonnum F. 1988. Importance of glutamine for γ-aminobutyric acid synthesis in rat neostriatum in vivo. J. Neurochem. 51, 1294–1299.

    Google Scholar 

  10. Bradford H. F. and Dodd P. R. 1976. Biochemistry and basic mechanisms in epilepsy, Pages 114–168in Davidson A.N., (ed) Biochemistry and Neurological Disease Blackwell, Oxford.

    Google Scholar 

  11. Emson P. C. 1978. Biochemical and metabolic changes in epilepsy, Pages 319–338in Barbeau A. and Huxtable R.J., (eds), Taurine and Neurological Disorders Raven Press, New York.

    Google Scholar 

  12. Leach M. J., Miller A. A., O'Donnell R. A., and Webster R. A. 1983. Reduced cortical glutamine concentrations in electrically kindled rats. J. Neurochem. 41:1492–1494.

    Google Scholar 

  13. Lehmann A. 1989. Abnormalities in the levels of extracellular and tissue aminoacids in the brain of the seizure-susceptible rat. Epilepsy Res. 3, 130–137.

    Google Scholar 

  14. Browning R. A. 1986. Neurobiology of seizure disposition—the genetically epilepsy-prone rat. VII. Neuroanatomical localization of structures responsible for seizures in the GEPR: lesion studies. Life Sci. 39, 857–867.

    Google Scholar 

  15. Balcom G. J., Lenox R. H. and Meyerhoff J. L. 1975. Regional γ-aminobutyric acid levels in rat brain determined after microwave fixation. J. Neurochem. 24, 609–613.

    Google Scholar 

  16. Lehmann A. 1974. Atlas Stéréotaxique du Cerveau de la Souris. Editions du CNRS, Paris.

    Google Scholar 

  17. Seiler N., and Knodgen B. 1985. Determination of amino acids by separation of their ion pairs with dodecylsulphate. J. Chromatog. 341, 11–21.

    Google Scholar 

  18. Chapman A. G., Faingold C. L., Hart G. P., Bowker H. M., and Meldrum B. S. 1986. Brain regional amino acid levels in seizure susceptible rats: changes related to sound-induced seizures. Neurochem. Int. 8, 273–279.

    Google Scholar 

  19. Peterson S. L., and Albertson T. E. 1982. Neurotransmitter and neuromodulator function in the kindled seizure and state. Prog. Neurobiol. 19, 237–270.

    Google Scholar 

  20. Ottersen O. P. and Storm-Mathisen J. 1984. Neurons containing or accumulating transmitter amino acids. Pages 141–246in Bjorklund A., Hokfelt T. and Kuhar M.J. (eds.) Handbook of Chemical Neuroanatomy. Vol. 3: Classical Transmitters and Transmitter Receptors in the CNS, part III Elsevier, Amsterdam.

    Google Scholar 

  21. Chapman A. G., Cheetham S. C., Hart G. P., Meldrum B. S. and Westerberg E. 1985. The effect of 2 convulsant β-carboline derivatives, DMCM and β-CCM, on regional neurotransmitter amino acid levels and on in vitro D-[3H]-aspartate release in rodents. J. Neurochem. 45, 370–381.

    Google Scholar 

  22. Godin Y., Heiner L., Mark J., and Mandel P. 1969. Effects of di-n-propylacetate, an anticonvulsive compound on GABA metabolism. J. Neurochem. 16, 869–873.

    Google Scholar 

  23. Simler S., Ciesielski L., Maitre M., Randrianarisoa H., and Mandel P. 1973. Effect of sodium n-dipropylacetate on audiogenic seizures and brain γ-aminobutyric acid level. Biochem. Pharmacol. 22:1701–1708.

    Google Scholar 

  24. Weissman D., Simler S., Ciesielski L., and Mandel P. 1978. Variations de la teneur en GABA de certaines zones du cerveau de la souris sous l'effet de l'acide propyl-2 pentène-2 oïque. C.R. Soc. Biol. (Paris) 172, 707–711.

    Google Scholar 

  25. Ciesielski L., Simler S., Gensburger C., Mandel P., Taillandier G., Benoit-Guyod J. L., Boucherle A., Cohen-Addad C., and Lajzerowicz J. 1979. GABA transaminase inhibitors, in GABA Biochemistry and CNS Function (Mandel P. and DeFeudis F.V., eds.) pp. 21–41, Plenum Press, New York.

    Google Scholar 

  26. Mandel P., Ciesielski L., Maitre M., Simler S., Mack G., and Kempf E. 1979. Involvement of central GABAergic systems in convulsions and aggressive behavior, Pages 475–492in Mandel P., and DeFeudis F.V., (eds) GABA, Biochemistry and CNS Function, Plenum Publishing Corp., New York.

    Google Scholar 

  27. Mandel P., Simler S., and Ciesielski L. 1982. Epilepsy: basic biochemistry and pharmacology, Pages 1–15,in Sandler M. (ed) BAP Monograph: Psychopharmacology of Anticonvulsants Oxford University Press, Oxford.

    Google Scholar 

  28. Simler S., Gensburger C., Ciesielski L., and Mandel P. 1978. Time course of the increase in GABA level in different mice brain regions following n-dipropylacetate treatment. Commun. Psychopharmacol. 2, 123–130.

    Google Scholar 

  29. Faingold C. L. 1988. The genetically epilepsy-prone rat. Gen. Pharmacol. 19, 331–338.

    Google Scholar 

  30. Faingold C. L. Gehlbach G., and Caspary D. M. 1986b. Decreased effectiveness of GABA-mediated inhibition in the inferior colliculus of the genetically epilepsy-prone rat. Exp. Neurol. 93, 145–159.

    Google Scholar 

  31. Faingold C. L., Gehlbach G., and Caspary D. M. 1989. On the role of GABA as an inhibitory neurotransmitter in inferior colliculus neurons: iontophoretic studies. Brain Res. 500, 302–312.

    Google Scholar 

  32. Faingold C. L., Gehlbach G., Travis M. A., and Caspary D. M. 1986. Neurobiology of seizure disposition — the genetically epilepsy-prone rat. VIII. Inferior colliculus neuronal response abnormalities in genetically epilepsy-prone rats: evidence for a deficit of inhibition. Life Sci. 39, 869–878.

    Google Scholar 

  33. Millan M. H., Meldrum B. S., and Faingold C. L. 1986. Induction of audiogenic seizure susceptibility by focal infusion of excitant amino acid or bicuculline into the inferior colliculus of normal rats. Exp. Neurol. 91:634–639.

    Google Scholar 

  34. Wada, J. A., Tevao A., White B., and Jung E. 1970. Inferior colliculus lesion and audiogenic seizure susceptibility. Expl. Neurol. 28, 326–332.

    Google Scholar 

  35. Browning R. A. and Faingold C. L. 1987. Effects on audiogenic seizures (AGS) in the genetically epilepsy prone rat (GEPR) of microinfusions into the inferior colliculus (IC) of noradrenergic (NA) and GABAergic agonists. Pharmacologist, 29, 142.

    Google Scholar 

  36. Duplisse B. R., Picchioni A. L., Chin L., and Consroe P. F. 1974. Relationship of the inferior colliculus and γ-aminobutyric acid (GABA) to audiogenic seizure in the rat. Fed. Proc. 33, 468.

    Google Scholar 

  37. Faingold C. L., Copley C. A., and Boersma C. A. 1987. Blockade of audiogenic seizures (AGS) in genetically epilepsy-prone rats (GEPR) by the microinjection into inferior colliculus (IC) of blockers of inhibitory and excitant amino acid (EEA) metabolism. Soc. Neurosci. Abstr. 13, 1158.

    Google Scholar 

  38. Meldrum B. S. 1986. Drugs acting on amino acid neurotransmitters, Pages 687–706in Fahnet S., et al., (eds.) Advances in Neurology, Vol. 43: Myoclonus. Raven Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simler, S., Ciesielski, L., Clement, J. et al. Amino acid neurotransmitter alterations in three sublines of Rb mice differing by their susceptibility to audiogenic seizures. Neurochem Res 15, 687–693 (1990). https://doi.org/10.1007/BF00973649

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973649

Key Words

Navigation