Skip to main content
Log in

Ultrasonic study of the molecular encapsulation and the micellization processes of dodecylethyldimethylammonium bromide-water solutions in the presence of β-cyclodextrin or 2,6-di-o-methyl-β-cyclodextrin

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Aqueous solutions of β-cyclodextrin (β-CD) or 2,6-di-o-methyl-β-cyclodextrin (DM-β-CD) and dodecylethyldimethylammonium bromide (D12EDMAB) have been studied from speed of sound (u) data at 298.15 K, using a pulse-echo-overlap technique. The molecular encapsulation process of the surfactant monomer into the cyclodextrin cavity and its effect in the micellization process of the surfactant have been analyzed from theu measurements: I) as a function of [D12EDMAB] in the presence of several initial cyclodextrin concentrations (β-CD or.DM-β-CD); II) as a function of [cyclodextrin] (β-CD or DM-β-CD), for an initial micellar solution of D12EDMAB and; III) as a function of the [cyclodextrin]/[surfactant] stoichiometric concentrations. Both inclusion complexes formed (β-CD∶D12EDMAB) and (DM-β-CD∶D12EDMAB) have stoichiometries of 1∶1, and their association constantK have been determined using a model proposed in this work, based on the additivity of the different contributions of the involved species to the speed of sound. The apparent critical micellar concentration, cmc*, of D12EDMAB is found to increase linearly upon the addition of cyclodextrin (β-CD or DM-β-CD). The free surfactant concentration in the micellar region, [D12EDMAB]f, decreases in the presence of β-CD and slightly increases in the presence of DM-β-CD. The influence of the parcial methylation of the β-cyclodextrin (β-CD⇔DM-β-CD) and of the polar head of the surfactant (D12TAB ⇔D12EDMAB) on the complextion and micellar parameters are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Bender and M. Komiyama,Cyclodextrin Chemistry, (Springer-Verlag, Berlin, 1978).

    Google Scholar 

  2. W. Saenger,Inclusion Compounds, Vol. 2 (Academic Press, London, 1984).

    Google Scholar 

  3. R. J. Clarke, J. M. Coates, and S. F. Lincoln,Adv. Carbohydr. Chem. Biochem. 46, 205 (1988).

    Google Scholar 

  4. I. Satake, T. Ikenoue, T. Takeshita, K. Hayawaka, and T. Maeda,Bull. Chem. Soc. Japan 58, 2746 (1985).

    Google Scholar 

  5. I. Satake, S. Yoshida, K. Hayawaka, T. Maeda, and Y. Kusumoto,Bull. Chem. Soc. Japan 59, 3991 (1986).

    Google Scholar 

  6. R. Palepu and V. C. Reinsborough,Can. J. Chem. 66, 325 (1988).

    Google Scholar 

  7. R. Palepu and V. C. Reinsborough,Can. J. Chem. 67, 1550 (1989).

    Google Scholar 

  8. R. Palepu, J. E. Richardson, V. C. Reinsborough,Langmuir 5, 218 (1989).

    Google Scholar 

  9. J. Georges and S. Desmettre,J. Colloid Int. Sci. 118, 192 (1987).

    Google Scholar 

  10. E. Saint Aman and D. Serve,J. Colloid Int. Sci. 138, 365 (1990).

    Google Scholar 

  11. T. Okubo, H. Kitano, and N. Ise,J. Phys. Chem. 80, 2661 (1986).

    Google Scholar 

  12. N. J. Turro, T. Okubo, and C. J. Chung,J. Amer. Chem. Soc. 104, 1789 (1982).

    Google Scholar 

  13. J. W. Park and J. M. Song,J. Phys. Chem. 93, 6454 (1989).

    Google Scholar 

  14. W. M. Z. Wan Yums, J. Taylor, D. M. Bloor, D. G. Hall, and E. Wynne-Jones,J. Phys. Chem. 96, 8979 (1992).

    Google Scholar 

  15. D. Jezequel, A. Mayaffre, and P. Detellier,Can. J. Chem. 69, 1865 (1991).

    Google Scholar 

  16. E. Junquera, E. Aicart, and G. Tardajos,J. Phys. Chem. 96, 4533 (1992).

    Google Scholar 

  17. E. Junquera, G. Tardajos, and E. Aicart,Langmuir 9, 1213 (1993).

    Google Scholar 

  18. E. Junquera, G. Tardajos, and E. Aircart,J. Colloid Int. Sci. 158, 388 (1993).

    Google Scholar 

  19. E. Junquera, J. González-Benito, L. Peña, and E. Aicart,J. Colloid Int. Sci. 163, 355 (1994).

    Google Scholar 

  20. R. P. Rohrbach, L. J. Rodríguez, E. M. Eyring, and F. J. Wojcik,J. Phys. Chem. 81, 6642 (1977).

    Google Scholar 

  21. S. Kato, H. Nomura, and Y. Miyahara,J. Phys. Chem. 89, 5417 (1985).

    Google Scholar 

  22. W. Knöche,J. Chem. Soc. Faraday Trans.1,81, 2551 (1985).

    Google Scholar 

  23. D. Hall, D. Bloor, T. Khalid, and E. Wyn-Jones,J. Chem. Soc. Faraday Trans.1 82, 2111 (1986).

    Google Scholar 

  24. D. J. Jobe, R. E. Verral, and V. C. Reinsborough,Can. J. Chem. 68, 2131 (1990).

    Google Scholar 

  25. D. J. Jobe, R. E. Verrall, E. Junquera, and E. Aicart,J. Phys. Chem. 97, 1243 (1993).

    Google Scholar 

  26. D. J. Jobe, R. E. Verrall, R. Palepu, and V. C. Reinsborough,J. Phys. Chem. 92, 3582 (1988).

    Google Scholar 

  27. N. Funasaki, H. Yodo, S. Hada, and S. Neya,Bull. Chem. Soc. Japan 65, 1323 (1992).

    Google Scholar 

  28. A. Essalim and D. Serve,Electrochimica Acta 37, 149 (1992).

    Google Scholar 

  29. K. Shigehara,Bull. Chem. Soc. Japan 38, 1700 (1965).

    Google Scholar 

  30. K. Shigehara,Bull. Chem. Soc. Japan 39, 2332 (1966).

    Google Scholar 

  31. H. Hoiland and E. Vikingstad,J. Colloid Int. Sci. 64, 126 (1978).

    Google Scholar 

  32. S. Backlund, H. Hoiland, O. J. Kvammen, and E. Ljosland,Acta Chem. Scand. 698 (1982).

  33. R. Zielinski, S. Ikeda, H. Nomura, and S. Kato,J. Colloid Int. Sci. 119, 398 (1987).

    Google Scholar 

  34. R. Zielinski, S. Ikeda, H. Nomura, and S. Kato,J. Colloid Int. Sci. 125, 497 (1988).

    Google Scholar 

  35. M. Alauddin, N. P. Rao, R. E. Verrall,J. Phys. Chem. 92, 1301 (1988).

    Google Scholar 

  36. R. Zielinski, S. Ikeda, H. Nomura, and S. Kato,J. Chem. Soc Faraday Trans. I 84, 151 (1984).

    Google Scholar 

  37. R. Zielinski, S. Ikeda, H. Nomura, and S. Kato,J. Colloid Int. Sci. 129, 175 (1989).

    Google Scholar 

  38. M. Alauddin and R. E. Verrall,J. Phys. Chem. 93, 3724 (1989).

    Google Scholar 

  39. R. De Lisi, S. Milioto, and R. E. Verrall,J. Solution Chem. 19, 97 (1990).

    Google Scholar 

  40. R. De Lisi, S. Milioto, and R. E. Verrall,J. Solution Chem. 19, 639 (1990).

    Google Scholar 

  41. R. De Lisi, S. Milioto, and R. E. Verrall,J. Solution Chem. 19, 665 (1990).

    Google Scholar 

  42. D. Atwood, V. Mosquera, M. García, J. Rodríguez, and M. J. Suárez,J. Colloid Int. Sci. 157, 168 (1993).

    Google Scholar 

  43. L. Wang and R. E. Verrall,J. Colloid Int. Sci. 160, 380 (1993).

    Google Scholar 

  44. E. Junquera, L. Peña, and E. Aicart,J. Solution Chem. 23, 421 (1994).

    Google Scholar 

  45. T. Okubo, Y. Maeda, and H. Kitano,J. Phys. Chem. 93, 3721 (1989).

    Google Scholar 

  46. G. Tardajos, M. Diaz Peña, and E. Aicart,J. Chem. Thermodyn. 18, 683 (1986).

    Google Scholar 

  47. W. Kroebel and K. M. Mahrt,Acustica 35, 154 (1976).

    Google Scholar 

  48. D. A. Deranleau,J. Amer. Chem. Soc. 91, 4044 (1969).

    Google Scholar 

  49. H. J. Schneider, R. Kramer, S. Simova, and V. Schneider,J. Amer. Chem. Soc. 110, 6442 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supplementary material available: Tables of speed of sound (14 pages) are available from the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña, L., Junquera, E. & Aicart, E. Ultrasonic study of the molecular encapsulation and the micellization processes of dodecylethyldimethylammonium bromide-water solutions in the presence of β-cyclodextrin or 2,6-di-o-methyl-β-cyclodextrin. J Solution Chem 24, 1075–1091 (1995). https://doi.org/10.1007/BF00973523

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973523

Key Words

Navigation