Skip to main content
Log in

Evidence for altered methionine methyl-group utilization in the diabetic rat's brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The methionine (MET) derivative, S-adenosylmethionine (SAM), provides methyl-groups for methylation reactions in many neural processes. In rats made diabetic with streptozotocin (SZ), brain SAM levels were generally lower (10–20%) than in controls, with a constant decrease being observed five weeks after onset of diabetes. This decrease in SAM levels may be due to reduced precursor (MET) availability because greatly elevating plasma MET concentrations in SZ diabetic rats by dietary manipulation increased their neural SAM concentrations to be approximately or even greater than (5–20%) those of controls. In contrast, neural levels of SAM's demethylated product, S-adenosylhomocysteine (SAH), were reduced to a greater extent (17–44%) than SAM levels in all groups of SZ diabetic rats independent of their plasma MET concentrations or brain SAM levels. This indicates that the decrease in SAH levels is not simply due to substrate (SAM) restriction. These changes in MET metabolites appear to be a general effect of diabetes rather than a non-pancreatic side-effect of SZ, because genetically diabetic BB Wistar rats also exhibited reduced brain SAM (25%) and brain SAH (46%) levels. These results indicate that methyl-groups from MET are handled differently in the brain of the diabetic rat, which considering the variety and importance of neural methylation reactions, could have important consequences for the diabetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MET:

methionine

SAM:

S-adenosylmethionine

SAH:

S-adenosylhomocysteine

SZ:

streptozotocin

BBW:

BB Wistar

LNAA:

large neutral amino acids

BCAA:

branchedchain amino acids

MET:BCAA:

methionine to branched-chain amino acid ratio

MET:LNAA:

methionine to large neutral amino acid ratio

References

  1. Lovenberg W. 1983. Methylation of small molecules. Pages 427–436 an overviewin Usdin, F., Borchardt, R. T., and Creveling, C. R. (eds) Biochemistry of S-adenosylmethionine and Related Compounds. MacMillan Press, London.

    Google Scholar 

  2. Kim S., Galletti P. and Paik W. K. 1979. Protein methylation: Perspectives in central nervous system. Pages 37–50in Zappia V., Usdin, E., and Salvatore, F. (eds), Biochemical and Pharmacological Roles of Adenosylmethionine and the Central Nervous System. Pergamon Press, Oxford.

    Google Scholar 

  3. Zappia V., Salvatore F., Porcelli M., and Cacciapuoti G. 1979. Novel aspects in the biochemistry of adenosylmethionine and related sulfur compounds. Pages 1–16in Zappia, V., Usdin, E., and Salvatore, F. (eds) Biochemical and Pharmacological Roles of Adenosylme hionine and the Central Nervous System, Pergamon Press, Oxford.

    Google Scholar 

  4. Blusztajn J. K., Zeisel S. H., and Wurtman R. J. 1979. Synthesis of lecithin (phosphatidylcholine) from phosphatidylethanolamine in bovine brain. Brain Res. 179:319–327.

    Google Scholar 

  5. Baldessarini R. J. 1966. Alterations in tissue levels of S-adenosyl-methionine. Biochem. Pharmacol. 15:741–748.

    Google Scholar 

  6. Rubin R. A., Ordonez L. A., and Wurtman R. J. 1974. Physiological dependence of brain methionine and SAMe concentrations on the serum amino acid pattern. J. Neurochem. 23:227–231.

    Google Scholar 

  7. Eloranta T. O. 1977. Tissue distribution of S-adenosylmethionine and S-adenosylhomocysteine in the rat. Biochem. J. 166:521–529.

    Google Scholar 

  8. Leprohon C. E., Silvestre-Lontok M. T., and Dyer J. R. 1985. Methionine administration increases the number of spiperone binding sites in rat's brain striatum. IVth World Congress of Biological Psychiatry, Philadelphia, Abstract #334.3, p 300.

    Google Scholar 

  9. Pardridge W. M. 1977. Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J. Neurochem. 28:103–108.

    Google Scholar 

  10. Bloxam D. L. 1972. Nutritional aspects of amino acid metabolism 3. The effects of diabetes on blood and liver amino acid concentrations in the rat. Br. J. Nutr. 27:249–259.

    Google Scholar 

  11. Crandall E. A., and Fernstrom J. D. 1983. Effect of experimental diabetes on the levels of aromatic and branched chain amino acids in rat blood and brain. Diabetes 32:222–230.

    Google Scholar 

  12. Brosnan J. T., Man K.-C., Hall D. E., Colbourne S. A., and Brosnan M. E. 1983. Interorgan metabolism of amino acids in streptozotocin-diabetic ketoacidotic rat. Am. J. Physiol. 244:E151-E158.

    Google Scholar 

  13. McCall A. L., Millington W. R., and Wurtman R. J. 1982. Metabolic fuel and amino acid transport into the brain in experimental diabetes mellitus. Proc. Natl. Acad. Sci. USA 79:5406–5410.

    Google Scholar 

  14. Glanville N. T., and Anderson G. H. 1984. Altered methionine metabolism in streptozotocin-diabetic rats. Diabetologia 27:468–471.

    Google Scholar 

  15. Glanville N. T., and Anderson G. H. 1985. The effect of insulin deficiency, dietary protein intake, and plasma amino acid concentrations on brain amino acid levels in rats. Can. J. Physiol. Pharmacol. 63:487–494.

    Google Scholar 

  16. Dyer J. R., Greenwood C. E., and McBurney M. I. 1988. The effects of diet and duration of diabetes on hypermethioninemia in streptozotocin diabetic rats. Can. J. Physiol. Pharmacol. In press.

  17. Like A. A., Butler L., Williams R. M., Appel M. C., Weringer E. J., and Rossini A. A. 1982. Spontaneous autoimmune diabetes mellitus in the BB rat. Diabetes 31 (Suppl. 1): 7–13.

    Google Scholar 

  18. Leprohon C. E., Woodger T. L., Ashley D. V., and Anderson G. H. 1979. Effect of mineral mixture in diet on protein intake regulation in the weanling rat. J. Nutr. 109:827–831.

    Google Scholar 

  19. Gharib A., Sarda N., Chabannes B., Cronenberger L., and Pacheco H. 1982 The regional concentrations of S-adenosyl-L-methionine, s-adenosyl-L-homocysteine, and adenosine in rat brain. J. Neurochem. 38:810–815.

    Google Scholar 

  20. Zlotkin S. H., Bryan M. H., and Anderson G. H. 1981. Cysteine supplementation to cysteine-free intravenous feeding regimens in new-born infants. Amer. J. Clin. Nutr. 34:914–923.

    Google Scholar 

  21. Fernstrom J. D. 1983. The role of precursor availability in control of monoamine biosynthesis in brain. Physiol. Rev. 63:484–546.

    Google Scholar 

  22. Trulson M. E., and Himmel C. D. 1983. Decreased brain dopamine synthesis rate and increased (3H)-spiroperidol binding in streptoxotocin diabetic rats. J. Neurochem. 40:1456–1459.

    Google Scholar 

  23. Hoffman D. R., Haning J. A., and Cornatzer W. E. 1981. Effect of alloxan diabetes on phosphatidylcholine biosynthetic-enzymes. Proc. Soc. Exp. Biol. Med. 167:143–146.

    Google Scholar 

  24. Cabrero C., Merida I., Oritz P., Varela I., and Mato J. M. 1986. Effects of alloxan on S-adenosylmethionine metabolism in the rat liver. Biochem. Pharmacol. 35:2261–2264.

    Google Scholar 

  25. Xue G-P., and Snoswell A. M. 1985. Disturbance of methyl group metabolism in alloxan-diabetic sheep. Biochem. Int. 10:897–905.

    Google Scholar 

  26. Ganguly P. K., Rice K. M., Panagia V., and Dhalla N. S. 1984. Sarcolemmal phosphatidylethanolamine N-methylation in diabetic cardiomyopathy. Circ. Res. 55:504–512.

    Google Scholar 

  27. Henderson G. D., Xue G-P., and Snoswell A. M. 1983. Carnitine and creatinine content of tissues of normal and alloxandiabetic sheep and rats.. Comp. Biochem. Physiol. 76B:295–298.

    Google Scholar 

  28. Walker R. D., and Duerre J. A. 1975. S-adenosylhomocysteine metabolism in various species. Can. J. Biochem. 53:312–319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyer, J.R., Greenwood, C.E. Evidence for altered methionine methyl-group utilization in the diabetic rat's brain. Neurochem Res 13, 517–523 (1988). https://doi.org/10.1007/BF00973290

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973290

Key words

Navigation