Skip to main content
Log in

Modulation of GABAergic neurotransmission in the brain by dipeptides

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effects of endogenous and synthetic peptides containing GABA or its analogues on the GABA/benzodiazepine/chloride ionophore, complex, GABAB receptor, Cl fluxes, GABA release and GABA uptake were studied using synaptic membranes, crude synaptoneurosomal preparations and slices prepared from the rat and mouse brain. The sodium-independent binding of GABA was strongly inhibited by GABA-histidine, followed by γ-glutamyl-homotaurine, GABA-glycine and γ-glutamyl-GABA. The binding of diazepam was slightly enhanced by the same peptides. The peptides alone had no effect on the chloride fluxes, but GABA-histidine, γ-glutamyl-GABA and GABA-glycine enhanced while γ-glutamyl-homotaurine and GABA-taurine inhibited GABA-stimulated chloride uptake. GABA-histidine was the most effective displacer of baclofen binding, but γ-glutamyl-homotaurine was entirely ineffective. The uptake of GABA was markedly inhibited in synaptosomal preparations by GABA-histidine, while all other peptides were less effective. γ-Glutamyl-taurine attenuated but γ-glutamyl-homotaurine and GABA-glycine enhanced the potassium-stimulated release of GABA. The present actions of GABA-histidine in vitro may be of significance for GABAergic neurotransmission in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sano, I., Kakimoto, Y., Kanazawa, A., Nakajima, T., andSchizimu, M. 1966. Identifizierung einiger Glutamyl Peptide aus Gehirn. J. Neurochem. 13:711–719.

    PubMed  Google Scholar 

  2. Reichelt, K. L., and Edminson, P. D. 1977. Peptides containing probable transmitter candidates in the central nervous system. Pages 171–181,in Gainer H. (ed.) Peptides in Neurobiology, Plenum Press, New York.

    Google Scholar 

  3. Török, K., Varga, V., Somogyi, J., Feuer, L., and Gulyás, J. 1981. Formation of γ-glutamyl-taurine in the rat brain. Neurosci. Lett. 27:145–149.

    PubMed  Google Scholar 

  4. Lähdesmäki, P., and Marnela, K.-M. 1984. Glutamyl-, aspartyl-and seryl-taurines a group of brain peptides. Acta Univ. Tamp. [B] 21:78–84.

    Google Scholar 

  5. Pisano, J. J., Wilson, J. D., Cohen, L., Abraham, D., and Udenfriend, S. 1961. Isolation of γ-aminobutyrylhistidine (homocarnosine) from brain. J. Biol. Chem. 236:499–502.

    PubMed  Google Scholar 

  6. Abraham, D., Pisano, J. J., and Udenfriend, S. 1962. The distribution of homocarnosine in mammals. Arch. Biochem. Biophys. 99:210–213.

    PubMed  Google Scholar 

  7. Margolis, F. L. 1974. Carnosine in the primary olfactory pathway. Science 184:909–911.

    PubMed  Google Scholar 

  8. Neidle, A., and Kandera, J. 1974. Carnosin, e-an olfactory bulb peptide. Brain Res. 80:359–364.

    PubMed  Google Scholar 

  9. Jones, A. W., Smith, D. A. S., and Watkins, J. C. 1984. Structure-activity relations of dipeptide antagonists of excitatory amino acids. Neuroscience 13:573–581.

    PubMed  Google Scholar 

  10. Fagg, G. E. 1985.l-Glutamate, excitatory amino acid receptors and brain function. Trends Neurosci. 8:207–210.

    Google Scholar 

  11. Varga, V., Marnela, K.-M., Kontro, P., Gylyás, J., Vadász, Z., Lähdesmäki, P., and Oja, S. S. 1987. Effects of acidic dipeptides on aminoacidergic neurotransmission in the brain. Pages 357–368,in Huxtable, R. J., Franconi, F. and Giotti, A. (eds), The Biology of Taurine. Methods and Mechanisms, Plenum Press, New York.

    Google Scholar 

  12. Zukin, S. R., Young, A. B., and Snyder, S. H. 1974. Gammaaminobutyric acid binding to receptor sites in the rat nervous system. Proc. Natl. Acad. Sci. USA 71:4802–4807.

    PubMed  Google Scholar 

  13. Whittaker, V. P., and Barker, L. A. 1972. The subcellular fractionation of brain tissue with special reference to the preparation of synaptosomes and their component organelles. Pages 1–52,in Fried, R. (ed.), Methods of Neurochemistry, Vol. 2, Marcel Dekker, New York.

    Google Scholar 

  14. DeFeudis, F., Ossola, L., Maitre, M., Elkouby, A., Roussel, G., and Mandel, P. 1979. Comparison of high-affinity binding of [3H]-GABA to subcellular particles of rat brain and liver. Neurochem. Res. 4:365–376.

    PubMed  Google Scholar 

  15. Tallman, J. F., Thomas, J. W., and Gallager, D. W. 1978. TABAergic modulation of benzodiazepine binding site sensitivity. Nature 274:383–385.

    PubMed  Google Scholar 

  16. Hill, D. R., and Bowery, N. G. 1981. [3H]-Baclofen and [3H]-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290:149–152.

    PubMed  Google Scholar 

  17. Allan, A. A., and Harris, R. A. 1986. γ-Aminobutyric acid agonists and antagonists alter chloride flux across brain membranes. Mol. Pharmacol. 29:497–505.

    PubMed  Google Scholar 

  18. Kontro, P. 1984. Synaptosomal hypotaurine and GABA transport by a single system. Mol. Physiol. 6:331–338.

    Google Scholar 

  19. Kontro, P., and Oja, S. S. 1978. Taurine uptake by rat brain synaptosomes. J. Neurochem. 30:1297–1304.

    PubMed  Google Scholar 

  20. Korpi, E. R., and Oja, S. S. 1984. Comparison of two superfusion systems for study of neurotransmitter release from rat cerebral cortex slices. J. Neurochem. 43:236–242.

    PubMed  Google Scholar 

  21. Oja, S. S., and Kontro, P. 1987. Cation effects on taurine release from brain slices: comparison to GABA. J. Neurosci. Res. 17:302–311.

    PubMed  Google Scholar 

  22. Korpi, E. R., and Oja, S. S. 1979. Efflux of phenylalanine from rat cerebral cortex slices as influenced by extra- and intracellular amino acids. J. Neurochem. 32:789–796.

    PubMed  Google Scholar 

  23. Snedecor, G.W. 1959. Statistical Methods, 5th edn., Iowa State College Press, Ames.

    Google Scholar 

  24. Nistri, A., Constanti, A., and Krnjević, K. 1980. Electrophysiological studies of the mode of action of GABA on vertebrate central neurons. Pages 81–90,in Pepeu, G., Kuhar, M. J., and Enna, S. J. (eds.), Advances in Biochemical Psychopharmacology, Vol. 21: Receptors for Neurotransmitters and Peptide Hormones, Raven Press, New York.

    Google Scholar 

  25. Olsen, R. W. 1981. GABA-benzodiazepine-barbiturate receptor interactions. J. Neurochem. 37:1–13.

    PubMed  Google Scholar 

  26. Karobath, M., and Sperk, G. 1979. Stimulation of benzodiazepine receptor binding by γ-aminobutyric acid. Proc. Natl. Acad Sci. USA 76:1004–1006.

    PubMed  Google Scholar 

  27. Braestrup, C., Nielsen, M., Krogsgaard-Larsen, P., and Falch, E. 1979. Partial agonists for brain GABA/benzodiazepine receptor complex. Nature 280:331–333.

    PubMed  Google Scholar 

  28. Krogsgaard-Larsen, P., and Johnston, G. A. R. 1978. Structure-activity studies on the inhibition of GABA binding to rat brain membranes by muscimol and related compounds. J. Neurochem. 30:1377–1382.

    PubMed  Google Scholar 

  29. Krogsgaard-Larsen, P., Hjeds, H., Curtis, D. R., Lodge, D., and Johnston, G. A. R. 1979. Dihydromuscimol, thiomuscimol and related heterocyclic compounds as GABA analogues. J. Neurochem. 32:1717–1724.

    PubMed  Google Scholar 

  30. Honoré, T., Hjeds, H., Krogsgaard-Larsen, P., and Christiansen, T. R. 1978. Syntheses and structure-activity studies of analogues of γ-aminobutyric acid (GABA). Eur. J. Med. Chem. 13:429–434.

    Google Scholar 

  31. Galzigna, L., Bianchi, M., Bertazzon A., Barthez A., Quadro, G., and Coletti-Previero, M. A. 1984. An N-protected γ-aminobutyric acid dipeptide, with anticonvulsant action. J. Neurochem. 42:1762–1766.

    PubMed  Google Scholar 

  32. Michaud, J. C., Mienville, J. M., Chambon, J. P., and Biziére, K. 1986. Interactions between three pyridazinyl-GABA derivatives and central GABA and glycine receptors in the rat, an in vivo, microiontophoretic study. Neuropharmacology 25:1197–1203.

    PubMed  Google Scholar 

  33. Levi, G. 1984. Release of putative transmitter amino acids. Pages 463–509in Lajtha, A. (ed.) Handbook of Neurochemistry, Vol. 6, 2nd ed., Plenum Press, New York.

    Google Scholar 

  34. Kalsner, S. 1985. Is there feedback regulation of neurotransmitter release by autoreceptors? Biochem. Pharmacol. 34:4085–4097.

    PubMed  Google Scholar 

  35. Kontro, P., and Oja, S. S. 1987. Taurine and GABA release from mouse cerebral cortex slices: effects of structural analogues and drugs. Neurochem. Res. 12:475–482.

    PubMed  Google Scholar 

  36. Ng, R. H., and Marshall, F. D. 1978. Regional and subcellular distribution of homocarnosine-carnosine synthetase in the central nervous system of rats. J. Neurochem. 30:187–190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga, V., Kontro, P. & Oja, S.S. Modulation of GABAergic neurotransmission in the brain by dipeptides. Neurochem Res 13, 1027–1034 (1988). https://doi.org/10.1007/BF00973146

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973146

Key Words

Navigation