Skip to main content
Log in

Is there an energy conservation “system” in brain that protects against the consequences of energy depletion?

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A poorly understood marked decrease (circa 50% of control) in local cerebral glucose utilization is caused by sublethal doses of NaCN. The decrease is global, occurring in essentially all brain regions and is entirely reversible within hours, leaving no obvious pathology. This event is not unique to NaCN in so far as a strikingly similar pattern of decreased glucose utilization occus with some other toxins. Nor can it be attributed to a direct action of NaCN since local application by microdialysis to the striatum produces a global depression. These results imply that some widely distributed “system” or substance is involved. We speculate the existence of a “system” possibly related to the reticular activating system that senses a fall in energy production and acts globally to make cells quiescent and thus would give some protection from excitotoxic driven damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pazdernik, T. L., Samson, F. L., and Nelson S. R. 1986. Soman's actions on the brain: A 2-[14C]-deoxyglucose study. Pages 415–420,in Muccino, R. R. (ed.), Synthesis and Applications of Isotopically Labeled Compounds, Elseiver Science Publishers, Amsterdam.

    Google Scholar 

  2. Pazdernik, T. L., Nelson, S. R., Cross, R., Churchill, L., Giesler, M., and Samson, F. E. 1986. Effects of antidotes on soman-induced brain changes. Arch. Toxicol. Suppl. 9:333–336.

    Google Scholar 

  3. Pazdernik, T. L., Cross, R., Nelson, S., Samson, F., and McDonough, J. 1983. Soman-induced depression of brain activity in TAB-pretreated rats: 2-deoxyglucose study. Neurotoxicology 4: 27–34.

    PubMed  Google Scholar 

  4. Schubert, J., and Brill, W. A. 1968. Antagonism of experimental cynadide toxicity in relation to thein vivo activity of cytochrome oxidase. J. Pharmacol. Exp. Ther. 162:352–359.

    PubMed  Google Scholar 

  5. Isom, G. E., and Way, J. L. 1984. Effects of oxygen on antagonism of cyanide intoxication: cytochrome oxidasein vitro. Toxicol. Appl. Pharmacol. 74:57–62.

    PubMed  Google Scholar 

  6. Piantadosi, C. A., Sylvia, A. L., and Jöbis, F. F. 1983. Cyanide-induced cytochrome a, a3 oxidation-reduction responses in rat brainin vivo. J. Clin. Invest. 72:1224–1233.

    PubMed  Google Scholar 

  7. Johnson, J. D., Meisenheimer, T. L. and Isom, G. E. 1986. Cyanide induced neurotoxicity: role of neuronal calcium. Toxicol. Appl. Pharmacol. 84:464–469.

    PubMed  Google Scholar 

  8. Way, J. L. 1984. Cyanide intoxication and its mechanism of antagonism. Ann. Rev. Pharmacol. Toxicol. 24:451–481.

    Google Scholar 

  9. Robinson, P. C., Baskin, S. I., Groff, W. A., and Franz, D. R. 1984. Cyanide loss from tissue baths in the presence and absence of tissue. Toxicol. Lett. 21:305–308.

    PubMed  Google Scholar 

  10. Paxinos, G., and Watson, C. 1982. The Rat Brain in Stereotaxic Coordinates, Academic Press, New York.

    Google Scholar 

  11. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., and Shimohara, M. 1977. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthet zed albino rats. J. Neurochem. 28: 897–916.

    PubMed  Google Scholar 

  12. Matsumoto, M., Inagaki, M., Kiuchi, Y., Izumi, Y., Yamazaki, Y., and Oguchi, K. 1993. Role of calcium ions in dopamine release induced by sodium cyanide perfusion in rat striatum. Neuropharmacology 32:681–688.

    PubMed  Google Scholar 

  13. Chastain, J. E., Samson, F., Nelson, S. R., and Pazdernik, T. L. 1990. Effects of microdialysis on brain metabolism in normal and seizure states. Neuroscience 37:155–161.

    PubMed  Google Scholar 

  14. MacMillan, V. H. 1987. Cerebral energy metabolism in cyanide encephalopathy. J. Cereb. Blood Flow Metab. 9:156–162.

    Google Scholar 

  15. Brierley, J. B., Brown, A. W., and Calverley, J. 1976. Cyanide intoxication in the rat: physiological and neuropathological aspects. J. Neurol. Neurosurg. Psychiatry 39:129–140.

    PubMed  Google Scholar 

  16. Brierley, J. B., Prior, P. F., Calverley J., and Brown, A. W. 1977. Cyanide intoxication in Macaca Mulatta. J. Neurol. Sci. 31:131–157.

    Google Scholar 

  17. Kuhr, W. G., van den Berg, C. J., and Korf, J. 1988. In vivo identification and quantitative evaluation of carrier-mediated transport of lactate at the cellular level in the striatum of conscious, freely moving rats. J. Cereb. Blood Flow and Metab. 8: 848–856.

    Google Scholar 

  18. Myers, R. E. 1978. Lactic acid accumulation as a cause of brain edema and cerebral necrosis resulting from oxygen deprivation. Pages 88–114,in Korobkin, R., and Guilleminault, C. (eds.), Advances in Perinatal Neurology, Spectrum Publishing, New York.

    Google Scholar 

  19. Rehncrona, S., Rosen, I., and Siesjö, B. K. 1981. Brain lactic acidosis and ischemic cell damage: I. Biochemistry and neurophysiology. J. Cereb. Blood Flow Metab. 1:297–311.

    PubMed  Google Scholar 

  20. McCulloch, J., Kelly, P. A. T., and Ford, I. 1982. Effect of apomorphine on the relationship between local cerebral glucose utilization and local cerebral blood flow. J. Cereb. Blood Flow Metab. 2:487–499.

    PubMed  Google Scholar 

  21. Aitken, P. G., and Braitman, D. J. 1989. The effects of cyanide on neural and synaptic function in hippocampal slices. Neurotoxicology 10:239–248.

    PubMed  Google Scholar 

  22. McCandless, D. W., Looney, G. A., Modak, A. T., and Stavinoha, W. B. 1985. Cerebral acetylcholine and energy metabolism change in acute ammonia intoxication in the lower primate tupaia glis. J. Lab Clin. Med. 106:183–186.

    PubMed  Google Scholar 

  23. McCandless, D. W. 1985. Octanoic acid induced coma and reticular formation energy metabolism. Brain Res. 335:131–137.

    PubMed  Google Scholar 

  24. McCandless, D. W. 1981. Insulin induced hypoglycemic coma and regional cerebral energy metabolism. Brain Res. 215:225–233.

    PubMed  Google Scholar 

  25. Iadecola, C., Nakai, M., Mraovitch, S., Ruggiero, D. A., Tucker, L. W., and Reis, D. J. 1983. Global increase in cerebral metabolism and blood flow produced by focal electrical simulation of dorsal medullary reticular formation in rat. Brain Res. 272:101–114.

    PubMed  Google Scholar 

  26. Mraovitch, S., Calando, Y., Pinard, E., Pearce, W. J., and Seylaz, J. 1992. Differential cerebrovascular and metabolic responses in specific neural systems elicited from the centromedian-parafascicular complex. Neuroscience 49:451–466.

    PubMed  Google Scholar 

  27. Rothman, S. M. 1993. Synaptic activity mediates death of hypoxic neurons. Science 220:536–537.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Sidney Ochs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pazdernik, T., Cross, R., Nelson, S. et al. Is there an energy conservation “system” in brain that protects against the consequences of energy depletion?. Neurochem Res 19, 1393–1400 (1994). https://doi.org/10.1007/BF00972468

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972468

Key Words

Navigation