Skip to main content
Log in

Concentrations of physiologically important metal ions in glial cells cultured from chick cerebral cortex

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Energy dispersive x-ray fluorescence and atomic absorption spectroscopy were used to determine the concentrations of Mg, Ca, Mn, Fe, Zn, and Cu in primary cultures of astroglial cells from chick embryo cortex in chemically defined serum-free growth medium. The intracellular volume of cultured glia was determined to be 8.34 μl/mg protein. Intracellular Mn, Fe, Zn, and Cu in these cells were ca. 10–200 μM, or 20–200 times the concentrations in the growth medium. Mg2+ was 7 mM in glial cells, only four-fold higher than in growth medium. Glutamine synthetase (GS), compartmentalized in glia, catalyzes a key step in the metabolism of neurotransmitterl-glutamate as part of the glutamate/glutamine cycle between neurons and glia. Hormones (insulin, hydrocortisone, and cAMP) added to growth medium differentially altered the activity of GS and the intracellular level of Mn(II), but not Mg(II). These findings suggest the possibility that glutamine synthetase activity could be regulated in brain by the intracellular levels of Mn(II) or the ratio of Mn(II)/Mg(II), which may in turn be controlled indirectly by means of transport processes that respond to hormones or secondary metabolic signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donaldson, J., St. Pierre, T., Minnich J. L., and Barbeau, A. 1973. Determination of Na+, K+, Mg2+, Cu2+, Zn2+, and Mn2+ in rat brain regions. Can. J. Biochem. 51:87–92.

    PubMed  Google Scholar 

  2. Bonilla, E., Salazar, E., Villasmil, I. J., and Villalobos, R. 1982. The regional distribution of manganese in the normal human brain, Neurochem. Res. 7:221–227.

    PubMed  Google Scholar 

  3. Matrone, G. 1970. Transition elements in biology: FASEB Nutrition Society symposium, Fed. Proc. 29:1461–1488.

    Google Scholar 

  4. Schramm, V. L. 1982. Metabolic regulation: could Mn2+ be involved? Trends Biochem. Sci. 7:369–371.

    Google Scholar 

  5. Williams, R. J. P. 1982. Free manganese(II) and iron(II) cations can act as intracellular cell controls. FEBS Lett. 140:3–10.

    PubMed  Google Scholar 

  6. Manganese in Metabolism and Enzyme Function (in Wedler, F. C., and Schramm, V. L., eds.) Academic Press, New York, 1986.

    Google Scholar 

  7. Trace Elements in Nutrition of Childrenin Chandra, R. K., (ed.), Nestle Nutrition Workshop, vol. 8, Raven Press, New York, 1985.

    Google Scholar 

  8. Metal Ions in Neurology and Psychiatry,in Gabay, S., Harris, J., and Ho, B. T. (eds.) Neurology & Neurobiology, vol. 15, A. R. Liss, Inc., New York, 1985.

    Google Scholar 

  9. Nicholls, J. G., and Kuffler, S. W. 1965. Na and K content of glial cells and neurons determined by flame photometry in the central nervous system of the leech. J. Neurophysiol. 28:519–525.

    PubMed  Google Scholar 

  10. Koch, A., Ranck, J. B., Jr., and Newman, B. L. 1962. Ionic content of the neuroglia. Exper. Neurol. 6:186–200.

    Google Scholar 

  11. Grossman, R., Lynch, L., and Shires, G. T. 1968. Ionic content and membrane potentials of cortical neurons and glia. Neurology 18:292.

    Google Scholar 

  12. Saubermann, A. J., and Scheid, V. L. 1985. Elemental composition and water content of neuron and glial cells in the central nervous system of the North American medicinal leech (Macrobdella decora) J. Neurochem. 44:825–834.

    PubMed  Google Scholar 

  13. Dennis, S. C., Lai, J. C. K., and Clark, J. B., 1980. The distribution of glutamine synthetase in subcellular fractions of rat brain. Brain Res. 197:469–475.

    PubMed  Google Scholar 

  14. Martinez-Hernandez, A., Bell, K. P., and Norenberg, M. D. 1977. Glutamine synthetase: glial localization in brain. Science 195:1356–1358.

    PubMed  Google Scholar 

  15. Norenberg, M. D. 1979. The distribution of glutamine synthetase in the central nervous system. J. Histochem. Cytochem. 27:469–475.

    Google Scholar 

  16. Hallermayer, K., Harmening, C., and Hamprecht, B. 1981. Cellular localization and regulation of glutamine synthetase in primary cultures of brain cells from newborn mice. J. Neurochem. 37:43–52.

    PubMed  Google Scholar 

  17. Walker, J. E. 1983. Glutamate GABA, and CNS disease: a review. Neurochem. Res. 8:521–550.

    PubMed  Google Scholar 

  18. Patel, A., Weir, M. D., Hunt, A., Tahourdin, C. S. M. and Thomas, D. G. T. 1985. Distribution of glutamine synthetase and glial fibrillary acidic protein and correlation of glutamine synthetase with glutamate decarboxylase in different regions of rat central nervous system. Brain Res. 331:1–9.

    PubMed  Google Scholar 

  19. Tholey, G., Ledig, M., Bloch, S., and Mandel, P. 1985. Glutamine synthetase and energy-metabolizing enzymes in cultured chick glial cells. Neurochem. Res. 10:191–200.

    PubMed  Google Scholar 

  20. Miller, R. E., Hackenberg, R., and Gershman, H. 1978. Regulation of glutamine synthetase in cultured 3&3-L1 cells by insulin, hydrocortisone, and dibutyryl cyclic AMP. Proc. Nat. Acad. Sci., USA 75:1418–1422.

    Google Scholar 

  21. Patel, A. J., and Hunt, A. 1985. Observations on cell growth and regulation of glutamine synthetase by dexamethasone in primary cultures of forebrain and cerebellar astrocytes. Dev. Brain Res. 18:175–184

    Google Scholar 

  22. Ruel, J., and Dussault, J. H. 1985. Triiodothyronine increases glutamine synthetase in primary cultures of rat cerebellum. Dev. Brain Res. 21:83–88.

    Google Scholar 

  23. Tate, S. S., and Meister, A. 1971. Regulation of rat liver glutamine synthetase: activation by α-ketoglutarate and inhibition by glycine, alanine, and carbamyl-phosphate. Proc. Nat. Acad. Sci. USA 68:781–785.

    PubMed  Google Scholar 

  24. Meister, A. 1974. Glutamine synthetase of mammals Pages 699–754,in “The Enzymes,” (Boyer, P. D., ed.), 3rd Ed., vol. 10, Academic Press, New York.

    Google Scholar 

  25. Wedler, F. C., and Toms, R. 1986. Interactions of Mn(II) with Mammalian Glutamine Syntehtase. Pages 221–238in Ref. 6.in

    Google Scholar 

  26. Pinkofsky, H. B., Maurizi, M. R. and Ginsburg, A. 1985. Binding Mn+2 or Mg+2 to active sites of glutamine synthetase from bovine brain. Fed. Proc. 44:1807.

    Google Scholar 

  27. Wedler, F. C., Denman, R. B., and Roby, W. G. 1982. Ovine brain glutamine synthetase is a Mn(II) enzyme. Biochemistry 21:6389–6397.

    PubMed  Google Scholar 

  28. Sensenbrenner, M. 1977. Dissociated brain cells in primary culture, Pages 191–213,in Federoff, S., and Hertz, L. (eds.) Cell Tissue and Organ Culture in Neurobiology, Academic, New York.

    Google Scholar 

  29. Bottenstein, J. E., and Sato, G. H. 1979. Growth of a neuroblastoma cell line in serum-free supplemented medium. Proc. Nat. Acad. Sci. USA 76:514–517.

    PubMed  Google Scholar 

  30. Rastegar, F., Maier, E. A. Heimberger, R., Christophe, C., Ruch, C., and Leroy, M. J. F. 1984. Simultaneous determination of trace elements in serum by energy-disperisive X-ray fluorescence spectrometry. Clin. Chem. 30:1300–1303.

    PubMed  Google Scholar 

  31. Varma, A. “Atomic Absorption Analysis,” CRC Press, Boca Raton, 1984.

    Google Scholar 

  32. Bloch, S., Ledig, M., Mandel, P., and Tholey, G. 1984. Purification et characterisation de la glutamine synthetase de cerveau de poulet. C. R. Acad. Sci. Paris 298(III):127–130.

    PubMed  Google Scholar 

  33. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  34. Kletzien, R. F., Parizi, M. W., Becker, J. E., and Potter, V. R. 1975. A method using 3-O-methyl-d-glucose and phloretin for the determination of intracellular water space of cells in monolayer culture. Anal. Biochem. 68:537–544.

    PubMed  Google Scholar 

  35. Kimelberg, H. K., and Frangakis, M. V. 1985. Furosemide-and bumetimide-sensitive ion transport and volume control in primary astrocyte cultures from rat brain. Brain Res. 361:125–134.

    PubMed  Google Scholar 

  36. Ash, D. E., and Schramm, V. L. 1982. Determination of free and bound manganese(II) in hepatocytes from fed and fasted rats. J. Biol. Chem. 257:9261–9264.

    PubMed  Google Scholar 

  37. Dietmar, J. W., and Schlue, W. R. 1983. Intracellular Na+ and Ca2+ in leech retzius neurons during inhibition of the Na+−K+ pump. Pfluegers Arch. 397:195–201.

    Google Scholar 

  38. Schramm, V. L. 1985. Evaluation of Mn(II) in metabolic regulation: analysis of proposed sites for regulation. Pages 1109–1132.in Ref. 6.

    Google Scholar 

  39. Brandt, M., and Schramm, V. L. 1986. Mammalian manganese metabolism and manganese uptake and distribution in rat hepatocytes. Pages 3–16,in Ref. 6.

    Google Scholar 

  40. Schramm, V. L., and Brandt, M. 1986. The manganese(II) economy of rat hepatocytes. Fed. Proc. 45:2817–2820.

    PubMed  Google Scholar 

  41. Cornford, E. M. 1985. The blood-brain barrier, a dynamic regulatory interface. Molec. Physiol. 7:219–260.

    Google Scholar 

  42. Goldstein, G. W., and Betz A. L. 1986. The blood-brain barrier. Scientific American 255:74–83.

    PubMed  Google Scholar 

  43. Hurley, L., Woolley, D. E., Rosenthal, F., and Timiras, P. S. 1963. Influence of manganese on susceptibility of rats to convulsions. Amer. J. Physiol. 204:493–496.

    PubMed  Google Scholar 

  44. Cook, D. B. 1985. Stimulation of cyclic-AMP production in chick renal tissue by cadmium and manganese. J. Inorg. Biochem. 24:223.

    PubMed  Google Scholar 

  45. Kurokawa, T., Danura, T., and Ishibashi, S. (1984) Mode of interaction between forskolin and manganese ion in activating the catalytic unit of adenylate cyclase from rat brain. J. Pharm. Dynam. 7:665–670.

    Google Scholar 

  46. Lai, J. C. K., Lim, L., and Davison, A. N. 1982. Effects of Cd2+, Mn2+, and Al3+, on rat brain synaptosomal uptake of noradrenalin and seratonin. J. Inorg. Biochem. 17:215–225.

    PubMed  Google Scholar 

  47. Doherty, J. D., Salem, N., Jr., Lauter, C. J., and Trams, E. G. 1983. Mn2+-stimulated ATPase in rat brain. Neurochem. Res. 8:493–499.

    PubMed  Google Scholar 

  48. Gianatsos, G., and Murray, M. T. 1982. Alterations in brain dopamine and GABA following inorganic or organic manganese administration. Neuro Tox. 3:75–82.

    Google Scholar 

  49. Schoepp, D. D. 1985. Manganese stimulates incorporation of [3H]inositol into a pool of phosphatidyl-inositol in brain that is not coupled to agonist-induced hydrolysis. J. Neurochem. 45:1481–1486.

    PubMed  Google Scholar 

  50. Eriksson, H., Morath, C., and Heilbronn, E. 1984. Effects of manganese on the nervous system. Acta Neurol. Scand. 70:89–93.

    Google Scholar 

  51. Lorkovic, H., and Feyer, A. 1984. Manganese ions inhibit acetyl choline receptor synthesis in cultured mouse soleus muscles. Neurosci. Lett. 51:331–335.

    PubMed  Google Scholar 

  52. Magour, S., Maser, H., and Steffen, I. 1983. Effect of manganese on cerebral RNA polymerase and free ribosomal protein synthesis, Pages 287–292,in Brown, S. S., and Savory, J., (eds.) Chemical Toxicology and Clinical Chemistry of Metals Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tholey, G., Ledig, M., Mandel, P. et al. Concentrations of physiologically important metal ions in glial cells cultured from chick cerebral cortex. Neurochem Res 13, 45–50 (1988). https://doi.org/10.1007/BF00971853

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00971853

Key Words

Navigation