Skip to main content
Log in

Amino acid concentrations and selected enzyme activities in rat auditory, olfactory, and visual systems

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Homogenates of specific brain regions of three sensory systems (auditory, olfactory, and visual) were prepared from pigmented Long-Evans Hooded rats and assayed for amino acid concentrations and activities of glutaminase, aspartate aminotransferase (total, cytosolic, and, by difference, mitochondrial), malate dehydrogenase, lactate dehydrogenase, and choline acetyltransferase. Comparing the quantitative distributions among regions revealed significant correlations between AAT and aspartate, between glutaminase and glutamate, between glutamate and glutamine, and between AAT plus glutaminase, or glutaminase alone, and the sum of aspartate, glutamate, and GABA, suggesting a metabolic pathway involving the synthesis of a glutamate pool as precursor to aspartate and GABA. Of the inhibitory transmitter amino acids, GABA concentrations routinely exceeded those of glycine, but glycine concentrations were relatively high in brainstem auditory structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooper, J. R., Bloom, F. E., and Roth, R. H. 1991. The Biochemical Basis of Neuropharmacology. 6th edition. Oxford University, New York.

    Google Scholar 

  2. Godfrey, D. A., Parli, J. A., Dunn, J. D., and Ross, C. D. 1988. Neurotransmitter microchemistry of the cochlear nucleus and superior olivary complex. Pages 107–121,in Syka, J. and Masterson, R. B. (eds.), Auditory Pathway, Plenum Publishing Corp., New York, N.Y.

    Google Scholar 

  3. Godfrey, D. A., Ross, C. D., Carter, J. A., Lowry, O. H., and Matschinsky, F. M. 1980. Effect of intervening lesions on amino acid distributions in rat olfactory cortex and olfactory bulb. J. Histochem. Cytochem. 28:1157–1169.

    Google Scholar 

  4. Halász, N., and Shepherd, G. M. 1983. Neurochemistry of the vertebrate olfactory bulb. Neurosci. 10:579–619.

    Google Scholar 

  5. Ross, C. D., Parli, J. A., and Godfrey, D. A. 1989. Quantitative distribution of six amino acids in rat retinal layers. Vision Res. 29:1079–1084.

    Google Scholar 

  6. Hill, D. W., Walters, F. H., Wilson, T. D., and Stuart, J. D. 1979. High performance liquid chromatographic determination of amino acids in the picomole range. Anal. Chem. 51:1338–1341.

    Google Scholar 

  7. Paxinos, G., and Watson, C. 1982. The Rat Brain in Stereotaxic Coordinates. Academic Press, New York.

    Google Scholar 

  8. Price, J. L. 1973. An autoradiographic study of complementary laminar patterns of termination of afferent fibers to the olfactory cortex. J. Comp. Neurol. 150:87–108.

    Google Scholar 

  9. Lowry, O. H., Rosebrough, N. J., Farr, A. J., and Randall, R. J. 1951. Protein measurements with Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  10. Curthoys, N. P., and Lowry, O. H. 1973. The distribution of glutaminase iso-enzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney. J. Biol. Chem. 248:162–168.

    Google Scholar 

  11. Wiet, G. J., Godfrey, D. A., Ross, C. D., and Dunn, J. D. 1986. Quantitative distributions of aspartate aminotransferase and glutaminase activities in the rat cochlea. Hearing Res. 24:137–150.

    Google Scholar 

  12. Parli, J. A., Godfrey, D. A., and Ross, C. D. 1987. Separate enzymatic microassays for aspartate aminotransferase isoenzymes. Biochim. Biophys. Acta 925:175–184.

    Google Scholar 

  13. Thalmann, I., Matschinsky, F. M., and Thalmann, R. 1970. Quantitative study of selected enzymes involved in energy metabolism of the cochlear duct. Ann. Otol. Rhinol. Laryngol. 79:12–29.

    Google Scholar 

  14. Godfrey, D. A., Bowers, M., Johnson, B. A., and Ross, C. D. 1984. Aspartate aminotransferase activity in fiber tracts of the rat brain. J. Neurochem. 42:1450–1456.

    Google Scholar 

  15. McCaman, R. E., and Hunt, J. M. 1965. Microdetermination of choline acetylase in nervous tissue. J. Neurochem. 12:253–259.

    Google Scholar 

  16. Fonnum, F. 1969. Radiochemical microassays for the determination of choline acetyltransferase and acetylcholinesterase activityties. Biochem. J. 115:465–472.

    Google Scholar 

  17. Godfrey, D. A., Williams, A. D., and Matschinsky, F. M. 1977. Quantitative histochemical mapping of enzymes of the cholinergic system in cat cochlear nucleus. J. Histochem. Cytochem. 25:397–416.

    Google Scholar 

  18. Lajtha, A., and Toth, J. 1974. Postmortem changes in the cerebral free amino acid pool. Brain Res. 76:546–551.

    Google Scholar 

  19. Golden, G. T., Ferraro, T. N., Fariello, R. G., and Hare, T. A. 1989. Amino acid profiles in Long-Evans rat superior colliculus, visual cortex, and inferior colliculus. Neurochem. Res. 14:465–472.

    Google Scholar 

  20. Palaiologos, G., Hertz, L., and Schousboe, A. 1988. Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate. J. Neurochem. 51:317–320.

    Google Scholar 

  21. Peng, L., Schousboe, A., and Hertz, L. 1991. Utilization of alpha-ketoglutarate as a precursor for transmitter glutamate in cultured cerebellar granule cells. Neurochem. Res. 16:29–34.

    Google Scholar 

  22. Godfrey, D. A., Carter, J. A., Lowry, O. H., and Matschinsky, F. M. 1978. Distribution of γ-aminobutyric acid, glycine, glutamate and aspartate in the cochlear nucleus of the rat. J. Histochem. Cytochem. 26:118–126.

    Google Scholar 

  23. Lowry, O. H., Roberts, N. R., and Lewis, C. 1956. The quantitative histochemistry of the retina. J. Biol. Chem. 220:879–892.

    Google Scholar 

  24. Lowry, O. H., Roberts, N. R., Schulz, D. W., Clow, J. E., and Clark, J. R. 1961. Quantitative histochemistry of retina. II. Enzymes of glucose metabolism. J. Biol. Chem. 236:2813–2820.

    Google Scholar 

  25. Ross, C. D., Bowers, M., and Godfrey, D. A. 1987. Distribution of glutaminase activity in retinal layers of rat and guinea pig. Brain Res. 401:168–172.

    Google Scholar 

  26. Godfrey, D. A., Ross, C. D., Parli, J. A., and Carlson, L. 1994. Aspartate aminotransferase and glutaminase activities in rat olfactory bulb, cochlear nucleus, and retina: Correlations with concentrations of substrate and product amino acids. Neurochem. Res. 19:693–702.

    Google Scholar 

  27. Banay-Schwartz, M., Lajtha, A., and Palkovits, M. 1989. Changes with aging in the levels of amino acids in rat CNS structural elements I. Glutamate and related amino acids. Neurochem. Res. 14:555–562.

    Google Scholar 

  28. Banay-Schwartz, M., Lajtha, A., and Palkovits, M. 1989. Changes with aging in the levels of amino acids in rat CNS structural elements II. Taurine and small neutral amino acids. Neurochem. Res. 14:562–570.

    Google Scholar 

  29. Clements, J. R., Monaghan, P. L., and Beitz, A. J. 1987. An ultrastructural description of glutamate-like immunoreactivity in the rat cerebellar cortex. Brain Res. 421:343–348.

    Google Scholar 

  30. Grandes, P., Ortega, Fl, and Streit, P. 1994. Glutamate-immunoreactive climbing fibres in the cerebellar cortex of the rat. Histochem. 101:427–437.

    Google Scholar 

  31. Ji, Z., Aas, J.-E., Laake, J., Walberg, F., and Ottersen, O. P. 1991. An electron microscopic, immunogold analysis of glutamate and glutamine in terminals of rat spinocerebellar fibers. J. Comp. Neurol. 307:296–310.

    Google Scholar 

  32. Levi, G., and Gallo, V. 1986. Release studies related to the neurotransmitter role of glutamate in the cerebellum: an overview. Neurochem. Res. 11:1627–1642.

    Google Scholar 

  33. Sekiguchi, M., Okamoto, K., and Sakai, Y. 1986. Release of endogenous aspartate and glutamate induced by electrical stimulation in guinea pig cerebellar slices. Brain Res. 378:174–178.

    Google Scholar 

  34. Jones, E. G. 1986. Neurotransmitters in the cerebral cortex. J. Neurosurg. 65:135–153.

    Google Scholar 

  35. Kolston, J., Osen, K. K., Hackney, C. M., Ottersen, O. P., and Storm-Mathisen, J. 1992. An atlas of glycine- and GABA-like immunoreactivity and colocalization in the cochlear nuclear complex of the guinea pig. Anat. Embryol. (Berl.) 186:443–465.

    Google Scholar 

  36. Ottersen, O. P., Storm-Mathisen, J., and Somogyi, P. 1988. Colocalization of glycine-like and GABA-like-immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res. 450:342–353.

    Google Scholar 

  37. Todd, A. J., and Sullivan, A. C. 1990. Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. J. Comp. Neurol. 296:496–505.

    Google Scholar 

  38. Yazulla, S., and Yang, C.-Y. 1988. Colocalization of GABA and glycine immunoreactivities in a subset of retinal neurons in tiger salamander. Neurosci. Lett. 95:37–41.

    Google Scholar 

  39. Bloom, F. E. 1990. Neurohumoral transmission and the central nervous system. Pages 244–268,in Gilman, A. G., Rall, T. W., Nies, A. S., and Taylor, P. (eds.), The Pharmacological Basis of Therapeutics, Pergamon Press, New York.

    Google Scholar 

  40. Bakkelund, A. H., Fonnum, F., and Paulsen, R. E. 1993. Evidence using in vivo microdialysis that aminotransferase activities are important in the regulation of the pools of transmitter amino acids. Neurochem. Res. 18:411–415.

    Google Scholar 

  41. Ross, C. D., and Godfrey, D. A. 1985. Distributions of aspartate aminotransferase and malate dehydrogenase activities in rat retinal layers. J. Histochem. Cytochem. 33:624–630.

    Google Scholar 

  42. Fitzpatrick, S. M., Cooper, A. J. L., and Duffy, T. E. 1983. Use of β-methylene-D-L-aspartate to assess the role of aspartate aminotransferase in cerebral oxidative metabolism. J. Neurochem. 41: 1370–1383.

    Google Scholar 

  43. Ross, C. D., Bowers, M., and Godfrey, D. A. 1987. Distributions of the activities of aspartate aminotransferase isoenzymes in rat retinal layers. Neurosci. Lett. 74:205–210.

    Google Scholar 

  44. Ross, C. D., and Godfrey, D. A. 1987. Distributions of activities of aspartate aminotransferase isoenzymes and malate dehydrogenase in guinea pig retinal layers. J. Histochem. Cytochem. 35:669–674.

    Google Scholar 

  45. Matschinsky, F. M., and Thalmann, R. 1967. Quantitative histochemistry of the organ of Corti, stria vascularis and macula sacculi of the guinea pig. I. Sampling procedure and analysis of pyridine nucleodides. Laryngoscope 77:292–305.

    Google Scholar 

  46. Matschinksy, F. M., and Thalmann, R. 1967. Quantitative histochemistry of microscopic structures of the cochlea. II. Ischemic alterations of levels of glycolytic intermediates and cofactors in the organ of Corti and stria vascularis. Ann. Otol. Rhinol. Laryngol. 76:638–646.

    Google Scholar 

  47. Matschinsky, F. M., and Thalmann, R. 1970. Energy metabolism of the cochlear duct. Pages 265–294,in Biochemical Mechanisms in Hearing and Deafness, Paparella, M. M., (ed.), Charles C. Thomas, Springfield, Ill.

    Google Scholar 

  48. Godfrey, D. A., Wiet, G. J., and Ross, C. D. 1986. Quantitative histochemistry of the cochlea. Pages 149–160,in Airschuler, R. A., Hoffman, D. W., and Bobbin, R. P., (eds.), Neurobiology of Hearing: The Cochlea, Raven Press, N.Y., N.Y.

    Google Scholar 

  49. Godfrey, D. A., Ross, C. D., Herrmann, A. D., and Matschinsky, F. M. 1980. Distribution and derivation of cholinergic elements in the rat olfactory bulb. Neuroscience 5:273–292.

    Google Scholar 

  50. Godfrey, D. A., Park, J. L., Dunn, J. D., and Ross, C. D. 1985. Cholinergic neurotransmission in the cochlear nucleus. Pages 163–183,in Drescher, D. G., (ed.), Auditory Biochemistry, Charles C. Thomas, Springfield, Ill.

    Google Scholar 

  51. Ross, C. D., and McDougal, Jr., D. B. 1976. The distribution of choline acetyltransferase activity in vertebrate retina. J. Neurochem. 26:521–526.

    Google Scholar 

  52. Ross, C. D., Dunning, D. D., Juengel, L. I., and Godfrey, D. A. 1985. Laminar distributions of choline acetyltransferase and acetylcholinesterase activities in the inner plexiform layer of rat retina. J. Neurochem. 44:1091–1099.

    Google Scholar 

  53. Ross, C. D., and Godfrey, D. A. 1985. Distributions of choline acetyltransferase and acetylcholinesterase activities in layers of rat superior colliculus. J. Histochem. Cytochem. 33:631–641.

    Google Scholar 

  54. Ross, C. D., Smith, J. T., and Godfrey, D. A. 1983. Regional distributions of choline acetyltransferase and acetylcholinesterase activities in layers of rat cerebellar vermis. J. Histochem. Cytochem. 31:927–937.

    Google Scholar 

  55. Hebb, C. O. 1957. Biochemical evidence for the neuronal function of acetylcholine. Physiol. Rev. 37:196–220.

    Google Scholar 

  56. Kása, P., and Silver, A. 1969. The correlation between choline acetyltransferase and acetylcholinesterase activity in different areas of the cerebellum of rat and guinea pig. J. Neurochem. 16:389–396.

    Google Scholar 

  57. Hertz, L., Yu, A. C. H., Potter, R. L., Fisher, T. E., and Schousboe, A. 1983. Metabolic fluxes from glutamate and towards glutamate in neurons and astrocytes in primary cultures. Pages 327–342,in Hertz, L., Kvamme, E., McGeer, E. G., and Schousboe, A., (eds.), Glutamine, Glutamate, and GABA in the Central Nervous System, Alan R. Liss, Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, C.D., Godfrey, D.A. & Parli, J.A. Amino acid concentrations and selected enzyme activities in rat auditory, olfactory, and visual systems. Neurochem Res 20, 1483–1490 (1995). https://doi.org/10.1007/BF00970598

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00970598

Key Words

Navigation