Skip to main content
Log in

The amino acid composition of the zinc-induced metallothionein isoforms in rat brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Recent investigation from this laboratory has identified in the rat brain a zinc-inducible and actinomycin D-inhibited metallothionein with an elution volume (Ve/Vo) of 2.08 and a molecular weight of smaller than 10,000 daltons. Furthermore, purification of the zinc-induced metallothionein by ion exchange chromatography on DEAE-Sephadex A-25 columns produced two isoforms, eluting, respectively, at 68 and 130 mM of Tris-acetate buffer, pH 7.5. In this paper, we report that zinc-induced metallothionein produces also two distinct isoforms on reverse phase high performance liquid chromatography that exhibit retention times of 17.23 and 18.53 minutes, respectively. Brain metallothionein was characterized further by studies showing that the zinc-induced metallothionein incorporated a large quantity of [35S]cysteine and that isoforms I and II contain 17 and 18 cysteine residues, respectively, while being devoid of any arginine, histidine, leucine, phenylalanine or tyrosine. The precise functions of the brain metallothionein isoforms, which may be related to the transport and homeostasis of essential elements such as zinc and copper, remain to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kagi, J. H. R., and Kojima, Y. 1987. Metallothionein II. Birkhauser Verlag, Basel/Boston/Stuttgart.

    Google Scholar 

  2. Hamer, D. H. 1986. Metallothionein. Ann. Rev. Biochem. 55:913–951.

    PubMed  Google Scholar 

  3. Itoh, M., Ebadi, M., and Swanson, S. 1983. The presence of zinc-binding proteins in brain. J. Neurochem. 41:823–829.

    PubMed  Google Scholar 

  4. Ebadi, M. 1984. The presence of metallothionein-like protein in rat brain. Fed. Proc. 43:3317.

    Google Scholar 

  5. Sato, S. M., Frazier, J. M., and Goldberg, A. M. 1984. The distribution and binding of zinc in the hippocampus. J. Neurosci. 4:1662–1670.

    PubMed  Google Scholar 

  6. Gulati, S., Paliwal, V. K., Sharma, M., Gill, K. D., and Nath, R. 1987. Isolation and characterization of a metallothionein-like protein from monkey brain. Toxicology 45:53–64.

    PubMed  Google Scholar 

  7. Ebadi, M. 1986. Biochemical characterization of a metallothionein-like protein in rat brain. Biol. Trace Element Res. 11:101–116.

    Google Scholar 

  8. Ebadi, M. 1986. Biochemical alteration of a metallothionein-like protein in developing rat brain. Biol. Trace Element Res. 11:117–128.

    Google Scholar 

  9. Ebadi, M., and Swanson, S. 1987. Characterization of metallothionein-like protein in rat brain. Experientia Suppl. 52:289–291.

    Google Scholar 

  10. Ebadi, M., Babin, D., and Swanson, S. 1987. The structure and antigenicity of metallothionein-like protein in rat brain. Soc. Neurosci. Abs. 17:1417.

    Google Scholar 

  11. Klauser, S., Kagi, J. H. R., and Wilson, K. J. 1983. Characterization of isoprotein patterns in tissue extracts and isolated samples of metallothioneins by reverse-phase high-pressure liquid chromatography. Biochem. J. 209:71–80.

    PubMed  Google Scholar 

  12. Suzuki, K. T., Sunaga, H., and Yajima, T. 1984. Separation of metallothionein into isoforms by column switching on gel permeation and ion-exchange columns with high-performance liquid chromatography-atomic-absorption spectrophotometry. J. Chromatography 303:131–136.

    Google Scholar 

  13. Vallee, B. T., and Galdes, A. 1984. The metallobiochemistry of zinc enzymes. Adv. Enzymol. 56:283–430.

    PubMed  Google Scholar 

  14. Ebadi, M., White, R. J., and Swanson, S. 1984. The presence and function of zinc-binding proteins in developing and mature brains. Pages 39–57,in Frederickson, C. J., Howell, G. A., and Kasarskis, E. J., (eds.), Neurobiology of Zinc, Alan R. Liss, Inc., New York.

    Google Scholar 

  15. Karin, M., and Herschman, H. R. 1980. Characterization of the metallothioneins induced in He La cells by dexamethasone and zinc. Eur. J. Biochem. 107:395–401.

    PubMed  Google Scholar 

  16. Moore, S., Stein, W. H., and Spackman, D. H. 1958. Automatic recording apparatus for use in the chromatography of amino acids. Anal. Chem. 30:1190–1206.

    Google Scholar 

  17. Schroeder, W. A., Shelton, J. R., Shelton, J. B., Cormick, J., and Jones, R. T. 1963. The amino acid sequence of the γ chain of human fetal hemoglobin. Biochemistry 2:992–1008.

    Google Scholar 

  18. Andrews, P. 1965. The gel filtration behavior of proteins related to the molecular weights over a wide range. Biochem. J. 96:595–606.

    PubMed  Google Scholar 

  19. Hirs, C. H. W. 1956. The oxidation of ribonuclease with performic acid. J. Biol. Chem. 219:611–621.

    PubMed  Google Scholar 

  20. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    PubMed  Google Scholar 

  21. Nordberg, M., and Kojima, Y. 1979. Metallothionein and other low molecular weight metal-binding proteins. Pages 48–50,in Kagi, J. H. R., and Nordberg, M., (eds.), Metallothionein, Birkhauser Verlag, Basel/Boston/Stuttgart.

    Google Scholar 

  22. Kagi, J. H. R., and Vallee, B. L. 1960. Metallothionein: a cadmium-and zinc-containing protein from equine renal cortex. J. Biol. Chem. 235:3460–3465.

    PubMed  Google Scholar 

  23. Fowler, B. A., Hildebrand, C. E., Kojima, Y., and Webb, M. 1987. Nomenclature of metallothionein. Experientia Suppl. 52:19–22.

    Google Scholar 

  24. Kissling, M. M., and Kagi, J. H. R. 1977. Primary structure of human hepatic metallothionein. FEBS Letters 82:247–250.

    PubMed  Google Scholar 

  25. Wong, K.-L., and Klaassen, C. D. 1979. Isolation and characterization of metallothionein which is highly concentrated in new-born rat liver. J. Biol. Chem. 254:12399–12403.

    PubMed  Google Scholar 

  26. Winge, D. R., Nielson, K. B., Zeikus, R. D., and Gray, W. R. 1984. Structural characterization of the isoforms of neonatal and adult rat liver metallothionein. J. Biol. Chem. 259:11419–11425.

    PubMed  Google Scholar 

  27. Munger, K., Germann, U. A., Beltramini, M., Niedermann, D., Baitella-Eberle, G., Kagi, J. H. R., and Lerch, K. 1985. (Cu,Zn)-Metallothioneins from fetal bovine liver. J. Biol. Chem. 260:10032–10038.

    PubMed  Google Scholar 

  28. Olafson, R. W., Sim, R. G., and Boto, K. G. 1979. Isolation and chemical characterization of the heavy metal-binding protein metallothionein from marine invertebrates. Comp. Biochem. Physiol. 62:407–416.

    Google Scholar 

  29. Nordberg, G. F., Nordberg, M., Piscator, M., and Vestirberg, O. 1972. Separation of two forms of rabbit metallothionein by isoelectric focusing. Biochem. J. 126:491–498.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebadi, M., Babin, D. The amino acid composition of the zinc-induced metallothionein isoforms in rat brain. Neurochem Res 14, 69–73 (1989). https://doi.org/10.1007/BF00969760

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969760

Key Words

Navigation