Skip to main content
Log in

Lipid peroxidation and antioxidant enzymatic systems in rat retina as a function of age

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the present study, we have assayed the enzymatic activity of Cu,Zn−SOD, Mn−SOD, GSH−Px, GSH-Red, Cat, and G6PD in rat retina as a function of age. Conjugated diene levels and MDA formation were also determined. The conjugated diene levels in rat retina were found to increase significantly with age, accompanied by a marked decrease in GSH−Px and Cat activities. No agerelated change in MDA levels and in GSH-Red and G6PD activity was found, whereas a significant increase in SOD activity was observed between 1 and 4 months. Decreased GSH−Px and Cat activity is related to increased lipid peroxidation with age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sickel, W. 1972. handbook of Sensory Physiology. Pages 667–727,in Fuortes, M. G. F. (ed.), Retinal metabolism in dark and light, Springer-Verlag, Berlin.

    Google Scholar 

  2. Crapo, D. J., and Tierney, D. F. 1974. Superoxide dismutase and pulmonary oxygen toxicity. Am. J. Physiol., 226:1401–1407.

    PubMed  Google Scholar 

  3. Freeman, B. A., and Crapo, J. D. 1982. Free radicals and tissue injury. Lab. Invest., 47:412–426.

    PubMed  Google Scholar 

  4. Varma, S. D., and Richards, R. D. 1988. Cellular antioxidant defense mechanisms. Pages 71–88,in Chow, C. K. (ed.), CRC Press, Inc. Boca Raton, Florida.

    Google Scholar 

  5. Halliwell, B., and Gutteridge, M. C. 1984. Oxygen toxicity, oxygen radical, transition metals and disease. Biochem. J. 219:1–14.

    PubMed  Google Scholar 

  6. Heath, H. 1962. The distribution and possible functions of ascorbic acid in the eye. Exp. Eye Res. 1:362–367.

    Google Scholar 

  7. Dilley, R. A., and McConnell, D. G. 1970. Alpha-tocopherol in the retinal outer segment of bovine eyes. J. Membr. Biol. 2:317–323.

    Google Scholar 

  8. Farnsworth, C. C., and Dratz, E. A. 1976. Oxidative damage of retinal rod outer segment membranes and the role of vitamin E. Biochim. Biophys. Acta 443:556–570.

    PubMed  Google Scholar 

  9. Katz, M. L., Robison, W. G. Jr., and Dratz, E. A. 1984. Free radicals in molecular biology, Aging, and Disease. Pages 163–180,in Armstrong, D., Sohal, R. S., Cutler, R. G., and Slater, T. F. (eds.), Potential role of autoxidation in age changes of the retina and retinal pigment epithelium of the eye, Raven Press, New York.

    Google Scholar 

  10. Hunt, D. F., Organisciak, D. T., Wang, H. M., and Wu, R. L. C. 1984. α-tocopherol in the developing rat retina: a high pressure liquid chromatographic analysis. Curr. Eye Res. 3:1281–1288.

    PubMed  Google Scholar 

  11. Reim, M., Heuvels, B., and Cattepoel, H. 1974. Glutathione peroxidase in some ocular tissues. Ophthalmic Res. 6:228–234.

    Google Scholar 

  12. Fried, R., and Mandel, P. 1975. Superoxide dismutase of mammalian nervous system. J. Neurochem. 24:433–438.

    PubMed  Google Scholar 

  13. Hall, M. O., and Hall, D. O. 1975. Superoxide dismutase of bovine of frog outer segments. Biochem. Biophys. Res. Commun. 67:1199–1204.

    PubMed  Google Scholar 

  14. Bhuyan, K. C., and Bhuyan, D. K. 1977. Regulation of hydrogen peroxide in eye humors. Effect of 3-amino-1-H-1,2,4-triazole on catalase and glutathione peroxidase of rabbit eye. Biochim. Biophys. Acta 497:641–651.

    PubMed  Google Scholar 

  15. Flohe, L. 1979. Oxygen free radicals and tissue damage. CIBA Foundation Symposium. 65. Pages 95–122. Glutathione peroxidase: fact and fiction, Excerpta Medica, Amsterdam.

    Google Scholar 

  16. Kagan, V. E., Lankin, V. Z., Shvedova, A. A., Novikov, K. N., Dobrina, S. K., Bratkovskaya, L. B., and Kuliev, I. Y. 1979. Enzymic and nonenzymic systems protecting photoreceptor membranes against active forms of oxygen and lipid peroxides. Bull. Exp. Biol. Med. 88:856–858.

    Google Scholar 

  17. Stone, W. L., and Dratz, E. A. 1982. Selenium and non-selenium glutathione peroxidase activities in selected ocular and non-ocular rat tissues. Exp. Eye Res. 35:405–412.

    PubMed  Google Scholar 

  18. Bensinger, R. E., Crabb, J. W., and Johnson, C. M. 1982. Purification and properties of superoxide dismutase from bovine retina. Exp. Eye Res. 34:623–634.

    PubMed  Google Scholar 

  19. Naash, M. I., and Anderson, R. E. 1984. Characterization of glutathione peroxidase in frog retina. Curr. Eye Res. 3:1299–1304.

    PubMed  Google Scholar 

  20. Rao, N. A., Thaete, L. G., Delmage, J. M., and Sevanian, A. 1985. Superoxide dismutase in ocular structures. Invest. Ophtalmol. Vis. Sci. 26:1778–1781.

    Google Scholar 

  21. McCord, J., and Fridovich, I. 1969. Superoxide dismutase an enzymatic function for erythrocuprein. J. Biol. Chem. 244:6049–6055.

    PubMed  Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. G. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  23. Paglia, O. E., Valentine, W. N. 1967. Studies on the quantitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70:158–169.

    PubMed  Google Scholar 

  24. Horn, H. D. 1963. Methods of enzymatic analysis. Pages 875–879in Bergmeyer, H. U. (ed.), Glutathione reductase. Academic Press, New York.

    Google Scholar 

  25. Holmes, R. S., and Masters, C. J. 1969. On the tissue and subcellular distribution of multiple forms of catalase in the rat. Biochem. Biophys. Acta, 191, 488–490.

    PubMed  Google Scholar 

  26. Kornberg, A., and Horecker, B. L. 1955. Methods of enzymology. Pages 323–325in Colowich, S. P., and Kaplan, N. A. (ed.), New York, Academic Press.

    Google Scholar 

  27. Recknagel, R. O., and Glende, E. A. 1984. Methods in enzymology. Pages 331–337in Packer, L. (ed.), Spectrophotometric detection of lipid conjugated dienes. New York, Academic Press.

    Google Scholar 

  28. Henry, R. J. 1964. Clinical Chemistry, principles and technics. Page 838. Harper and Row Publishers.

  29. Ohkawa, H., Ohishi, N., and Yagi, K. 1979. Assay for lipid peroxydes in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95:351–358.

    PubMed  Google Scholar 

  30. Handelman, G. J., and Dratz, E. A. 1986. Oxidant damage to retina and pigment epithelium. Advanc. in Free Rad. Biol. Med. 2:1–89.

    Google Scholar 

  31. Vanella, A., Geremia, E., D'Urso, G., Tiriolo, P., Di Silvestro, I., Grimaldi, R., and Pinturo, R. 1982. Superoxide dismutase activities in aging rat brain. Gerontology 28:108–113.

    PubMed  Google Scholar 

  32. Nohl, H., and Hegner, D. 1978. Do mitochondria produce oxygen radical in vivo? Eur. J. Biochem. 82:563–567.

    PubMed  Google Scholar 

  33. Vanella, A., Villa, R. F., Gorini, A., Campisi, A., Giuffrida-Stella, A. M. 1989. Superoxide dismutase and cytochrome oxidase activities in light and heavy synaptic mitochondria from cerebral cortex during aging. J. Neurosci. Res., 22:351–355.

    PubMed  Google Scholar 

  34. Kagan, V., Shvedova, A. A., Novikov, K. N., and Kozlov, Y. P. 1973. Light-induced free radical oxidation of membrane lipids in photoreceptors of frog retina. Biochim. Biophys. Acta 330:76–79.

    PubMed  Google Scholar 

  35. Farnsworth, C. C., Stone, W. L., and Dratz, A. 1978. Effects of Vitamin E and selenium deficiency on the fatty acid composition of rat retinal tissues. Biochim. Biophys. Acta, 552:281–293.

    Google Scholar 

  36. Noell, W. K. 1980. The effects of constant light on visual processes. Pages 3–28in Williams, T. P., and Baker, B. N., (eds.), There are different kinds of retinal light damage in the rat. New York, Plenum Press.

    Google Scholar 

  37. Parrish, J. A., Anderson, R. R., Urbach, F., and Pitts, D. 1978. UV-A. Biological effects of ultraviolet radiation with emphasis on human responses to longwave ultraviolet. New York, Plenum Press.

    Google Scholar 

  38. Sarna, T., and Sealy, R. C. 1984. Free radicals from eumelanins: quantum yields and wavelength dependence. Arch. Biochem. Biophys. 232:574–578.

    PubMed  Google Scholar 

  39. Goodchild, N. T., Kwock, L., and Lin, P. S. 1981. Oxygen and oxy-radicals in chemistry and biology. Pages 654–648in Rodgers, M. A. J., Powers, E. L., (eds.) Melanin: a possible superoxide scavenger. New York, Academic Press.

    Google Scholar 

  40. Geremia, E., Corsaro, C., Bonomo, R., Giardinelli, R., Pappalardo, P., Vanella, A., and Sichel, G. 1984. Eumelanins as free radical trap and superoxide dismutase activities in amphibia. Comp. Biochem. Physiol. 79B:67–69.

    Google Scholar 

  41. Noell, W. K. 1980. Possible mechanism of photoreceptor damage by light in mammalian eye. Vis. Res. 20:1163.

    PubMed  Google Scholar 

  42. Pacer, Z., Veselkova, A., and Rath, R. 1965. Kinetik des malondialehydes im organismus. Experentia. 21:19–20.

    Google Scholar 

  43. Armstrong, D., Santangelo, G., and Connole, E. 1981. The distribution of peroxide regulating enzymes in canine eye. Curr. Eye Res. 1:225–242.

    PubMed  Google Scholar 

  44. Vanella, A., Geremia, E., D'urso, G., Tiriolo, P., Di Silvestro, I., Grimaldi, E., and Pinturo, R. 1980. Superoxide dismutase activities in aging rat brain. It. J. Biochem. 29:6–7.

    Google Scholar 

  45. Benzi, G., Marzatico, F., Pastoris, O., and Villa, R. F. 1989. Relationship between aging, drug treatment and the cerebral enzymatic antioxidant system. Exp. Gerontol. 24:137–148.

    PubMed  Google Scholar 

  46. Del Maestro, R., and McDonald, W. 1989. Subcellular localization of superoxide dismutases, glutathione peroxidase and catalase in developing rat cerebral cortex. Mech. Aging Dev. 48:15–31.

    PubMed  Google Scholar 

  47. Mishra, O. P., and Delivoria-Papadopoulos, M. 1988. Antioxidant enzymes in fetal guinea pig brain during development and the effect of maternal hypoxia. Dev. Brain Res. 42:173–179.

    Google Scholar 

  48. Mishra, O. P., and Delivoria-Papadopoulos, M. 1989. Lipid peroxidation in developing fetal guinea pig brain during nonnoxia and hypoxia. Dev. Brain Res. 45:129–135.

    Google Scholar 

  49. Benzi, G., Pastoris, O., Marzatico, F., and Villa, R. F. 1989. Age-related effect induced by oxidative stress on the cerebral glutathione system. Neur. Res. 14:473–481.

    Google Scholar 

  50. Mizuno, Y., and Ohta, K. 1986. Regional distribution of thiobarbituric acid-reactive products, activities of enzymes regulating the metabolism of oxygen free radicals and some of the related enzymes in adult and aged rat brains. 1986. J. Neurochem. 46:1344–1352.

    PubMed  Google Scholar 

  51. Benzi, G., Pastoris, O., Marzatico, F., and Villa, R. F. 1989. Cerebral enzyme antioxidant system. Influence of aging and phosphatidylcholine. J. Cerebr. Blood Flow Metab. 9:373–380.

    Google Scholar 

  52. Martin, J. P., and Burch, P. E. 1988. Oxy-radicals in molecular biology and pathology. Pages 393–404,in Cerutti, P. A., Fridovich, I., and McCord, J. M. (eds.), Oxygen radicals are generated by dye-mediated intracellular photooxidation. Alan R. Liss, Inc., New York.

    Google Scholar 

  53. Noell, W. K., Walker, V., Kamy, B., and Berman, S. 1966. Retinal damage by light in rats. Invest. Ophthalmol. 5:450–473.

    PubMed  Google Scholar 

  54. Kuwabara, T., and Gorn, R. A. 1968. Retinal damage by visible light: an electron microscopic study. Arch. Ophthalmol. 79:69–78.

    PubMed  Google Scholar 

  55. Autor, A. P., Frank, L., and Roberts, R. J. 1976. Developmental characteristic of pulmonary superoxide dismutase: relationship to idiopathic respiratory distress syndrome Pediatr. Res. 10:154–158.

    PubMed  Google Scholar 

  56. Stevens, J. B., and Autor, A. P. 1977. Induction of superoxide dismutase by oxygen neonatal rat lung. J. Biol. Chem. 252:3509–3514.

    PubMed  Google Scholar 

  57. Vanella, A., Pinturo, R., Grimaldi, R., Tiriolo, P., Di Silvestro, I., Grasso, M., D'Urso, G., and Geremia, E. 1981. Superoxide dismutase activities in rat brain: effect of hyperoxia. IRCS Med. Sci. 9:144–145.

    Google Scholar 

  58. Vanella, A., Geremia, E., Tiriolo, P., Pinturo, R., and Rizza, V. 1982. Advances in studies on heart metabolism. Pages 449–454in Caldarera, C. M., Harris, P. (eds.), Superoxide dismutase activites in rat heart: effect of hyperoxia. Bologna, CLUEB.

    Google Scholar 

  59. Stone, W. L., Henderson, R. A., Howard, G. H., Hollis, A. L., Payne, P. H., and Scott, R. L. 1989. The role of antioxidant nutrients in preventing hyperbaric oxygen damage to the retina. Free Rad. Biol. Med. 6:505–512.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castorina, C., Campisi, A., Di Giacomo, C. et al. Lipid peroxidation and antioxidant enzymatic systems in rat retina as a function of age. Neurochem Res 17, 599–604 (1992). https://doi.org/10.1007/BF00968789

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00968789

Key Words

Navigation