Skip to main content
Log in

Transport of valproate and its effects on GABA uptake in astroglial primary culture

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The antiepileptic drug Na+-valproate (VPA) is a broadspectrum anticonvulsant. It has been proposed to be involved in the inhibitory mechanisms of GABA-ergic systems. In this study, transport of the drug and possible influence on the GABA uptake were investigated in primary astroglial cell cultures from newborn rat cerebral cortex. The results show a Na+ and K+ independent high affinity uptake for VPA, withK m andV max not significantly different from those observed for the GABA uptake. In the presence of the drug, the Km-value of the GABA uptake increased. The GABA uptake inhibitors guvacine, (RS)-Cis-4-OH-nipecotic acid and 4,5,6,7-tetrahydroisoxazolo (4,5-c) pyridin-3-ol (THPO) did not influence upon the uptake of VPA, suggesting a transport mechanism for the drug, separated from the GABA uptake carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aman, M.G., Werry, J.S., Paxton, J.W., and Turbott, S.H. 1987. Effects of Sodium Valproate on Psychomotor Performance in Children as a Function of Dose, Fluctuations in Concentration, and Diagnosis. Epilepsia. 28:115–124.

    PubMed  Google Scholar 

  2. Gram, L., and Bentsen, D. 1985. Valproate: an updated review. Acta Neurol. Scand. 72:129–139.

    PubMed  Google Scholar 

  3. Macdonald, R.L., and McLean, M.J. 1986. Anticonvulsant Drugs: Mechanisms of Action. Pages 713–736.in (A.V. Delgado-Escueta, A.A. Ward Jr., D.M. Woodbury, and R.J. Porter eds.) Adv. Neurol. vol 44, Raven Press, New York.

    Google Scholar 

  4. Godin, Y., Heiner, L., Mark, J., and Mandel, P. 1969. Effects of di-n-propylacetate, an anticonvulsant compound on GABA metabolism. J. Neurochem. 16:869–873.

    PubMed  Google Scholar 

  5. Gram, L., Larsson, O.M., Johnsen, A.H., and Schousboe, A. 1988. Effects of valproate, vigabatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons. Epilepsy Res. 2:87–95.

    PubMed  Google Scholar 

  6. Preisendörfer, U., Zeise, M.L., and Klee, R. 1987. Valproate enhances inhibitory postsynaptic potentials in hippocampal neurons in vitro. Brain Res. 435:213–219.

    PubMed  Google Scholar 

  7. Hackman, J.C., Grayson, V., and Davidoff, R.A. 1981. The presynaptic effects of valproic acid in the isolated frog spinal cord. Brain Res. 220:269–285.

    PubMed  Google Scholar 

  8. VanDongen, A.M.J., Van Erp, M.G., and Voskuyl, R.A. 1986. Valproate reduces excitability by blockage of sodium and potassium conductance. Epilepsia. 27:177–182.

    PubMed  Google Scholar 

  9. Larsson, O.M., Gram, L., Schousboe, I., and Schousboe, A. 1986. Differential effect of gamma-vinyl GABA and valproate on GABA-transaminase from cultured neurons and astrocytes Neuropharmacology. 25:617–625.

    PubMed  Google Scholar 

  10. Martin, M.L., and Regan, C.M. 1988. The anticonvulsant sodium valproate specifically induces the expression of a rat glial heat shock protein which is identified as the collagen type IV receptor. Brain Res. 459:131–137.

    PubMed  Google Scholar 

  11. Hansson, E., Eriksson, P., and Nilsson, M. 1985. Amino acid and monoamine transport in primary astroglial cultures from defined brain regions. Neurochem. Res. 10:1335–1341.

    Google Scholar 

  12. Hertz, L. 1979. Functional interactions between neurons and astrocytes I. Turnover and metabolism of putative amino-acid transmitters. Progr. Neurobiol. 13:277–323.

    PubMed  Google Scholar 

  13. Sellström, Å., and Hamberger, A. 1975. Neuronal and glial systems for γ-aminobutyric acid transport. J Neurochem. 24:847–852.

    PubMed  Google Scholar 

  14. Waltz, W., and Hertz, L. 1983. Functional interactions between neurons and astrocytes II. Potassium homeostasis at the cellular level. Progr. Neurobiol. 20:133–183.

    PubMed  Google Scholar 

  15. Hansson, E., Rönnbäck, L., Persson, L.I., Lowenthal, A., Noppe, M., Alling, C., and Karlsson, B. 1984. Cellular composition of primary cultures from cerebral cortex, striatum, hippocampus, brain stem and cerebellum. Brain Res. 300:9–18.

    PubMed  Google Scholar 

  16. Hansson, E., Isacsson, H., and Sellström, Å. 1984. Characteristics of dopamine and GABA transport in primary cultures of astroglial cells. Acta Phys. Scand. 121:333–341.

    Google Scholar 

  17. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. 1951. Protein measurements with the Folin Phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  18. Krogsgaard-Larsen, P., Falch, E., Larsson, O.M., and Schousboe, A. 1987. GABA uptake inhibitors: relevance to antiepileptic drug research. Epilepsy Res. 1:77–93.

    PubMed  Google Scholar 

  19. Schousboe, A., Hjeds, H., Engler, J., Krogsgaard-Larsen, P. and Wood, J.D. 1986. Tissue distribution, metabolism, anticonvulsant efficacy and effect on brain amino acid levels of the glia selective γ-aminobutyric acid transport inhibitor 4,5,6,7-tetrahydroisoxazolo (4,5-c) pyridin-3-ol in mice and chicks. J. Neurochem. 47:758–763.

    PubMed  Google Scholar 

  20. Aly, M.I., and Abdel-Latif, A.A. 1980. Studies on distribution and metabolism of valproate in rat brain, liver and kidney. Neurochem. Res. 5:1231–1242.

    PubMed  Google Scholar 

  21. Frey, H.H., and Löscher, W. 1978. Distribution of valproate across the interface between blood and cerebrospinal fluid. Neuropharmacology. 17:637–642.

    PubMed  Google Scholar 

  22. Cornford, E.M., Diep, C.P., and Pardridge. 1985. Blood-brain barrier transport of valproic acid. J. Neurochem. 44:1541–1550.

    PubMed  Google Scholar 

  23. Deuticke, B. 1989. Monocatboxylate transport in red blood cells: kinetics and chemical modification. Meth. Enzymol. 173:300–329.

    PubMed  Google Scholar 

  24. Bolli, R., Nalecz, K.A., and Azzi, A. 1989. Monocarboxylate and α-ketoglutarate carriers from bovine heart mitochondria. J. Biol. Chem. 264:18024–18030.

    PubMed  Google Scholar 

  25. Balcar, V.J., Mark, J., Borg, J., and Mandel, P. 1979. High affinity uptake of γ-aminobutyric acid in cultured glial and neuronal cells. Neurochem. Res. 4:339–354.

    Google Scholar 

  26. Schousboe, A., Hertz, L., and Svenneby, G. 1977. Uptake and metabolism of GABA in astrocytes cultured from dissociated mouso brain hemispheres. Neurochem. Res. 2:217–229.

    Google Scholar 

  27. Löscher, W., and Schwartz-Porsche, D. 1986. Low levels of γ-aminobutyric acid in cerebrospinal fluid of dogs with epilepsy J. Neurochem. 46:1322–1325.

    PubMed  Google Scholar 

  28. Ribak, C.E. 1985. Axon terminals of GABA-ergic Chandelier cells are lost at epileptic foci. Brain Res. 326:251–260.

    PubMed  Google Scholar 

  29. Roberts, E. 1984. GABA Related Phenomena, Models of Nervous System Function, and Seizures. Ann. Neurol. 16(suppl.):77–89.

    Google Scholar 

  30. Peters, A., Palay, S.L., and Webster, H. de F. (eds.). 1976. The fine structure of the nervous system: the Neurons and Supporting cells. W.B. Saunders company, Philadelphia, London, Toronto.

    Google Scholar 

  31. Pope, A. 1978. Dynamic Properties of Glia Cells, Pages 13–20,in Schoffeniels, E., Franck, G., Tower, D.B., and Hertz, L. (eds.) Pergamon Press, Oxford and New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, M., Hansson, E. & Rönnbäck, L. Transport of valproate and its effects on GABA uptake in astroglial primary culture. Neurochem Res 15, 763–767 (1990). https://doi.org/10.1007/BF00968551

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00968551

Key Words

Navigation